
Advanced Modbus Module User Manual

Modbus Client and Server Driver Suite for Ignition

Version 1.1.13-v8.1
April 17, 2025 17:37z

The Advanced Modbus™ Communications Module for Ignition™
implements either end of a Modbus TCP or Modbus RTU communication
channel. Modbus RTU is supported on local Serial Ports and on remote

Serial Ports via raw TCP connections.

April 17, 2025 17:37z
Advanced Modbus Module User Manual
Modbus Client and Server Driver Suite for Ignition

Table of Contents
Overview..3
Modbus OPC Addressing...4

Supported Address Formats..4
Advanced Modbus Server..5

Supported Function Codes..5
Data Consistency..5
Modbus TCP...6
Modbus RTU (Local and Remote Serial)...6
Device Settings...6

General..6
Communications..6
RTU Timing and Framing...7
Persistence...7

Device Configuration...7
Import/Export..7
Unit Detail Configuration..8
Server Slave Unit Editing..8
Automated Device Creation..9

Advanced Modbus Client..10
Supported Function Codes..10
Device Settings...10

General..11
Communications..11
Other..11

Modbus TCP...12
Modbus RTU Serial..12
Modbus RTU via TCP..12
Device Configuration...13

Client Slave Unit Editing..13
Read Request Optimization...13
Write Request Options..13
Automated Device Creation..13

Scripting Arbitrary Modbus Requests..15
Moxa NPort Application Notes..16
Linux Serial Port Application Notes..17

Low Latency Mode...17
Serial Device Access Privileges...17
RTU Frame Timing Adjustment...17

April 17, 2025 17:37z
Advanced Modbus Module User Manual
Modbus Client and Server Driver Suite for Ignition

Overview
The Advanced Modbus Module enables Inductive Automation’s Ignition platform to communicate with
a large variety of devices that offer support for the venerable Modbus Application Protocol. The core
addressing syntax is the same as for Ignition’s native Modbus driver. This module provides several
additional features, both functional and syntactic, as follows:

• Serve data to external Modbus clients via both TCP and RTU protocols. The same Modbus
function codes a client connection can issue are fully implemented in this server driver, with
multiple virtual slaves emulated in a single driver instance. Multiple simultaneous client
connections to these emulated slaves are supported, and may be any connection type (listening
ports).

• Browse the full range of bit and word addresses in driver instances, per slave unit, out of the box.
By default, slave unit #1 is assumed to exist and contain a full complement of coils, discrete
inputs, analog inputs, and holding registers (64k of each). Addresses available in different slave
units of a connection are individually configurable by slave unit number, in both client and
server drivers.

• Browse all allowed data type transformations for configured word addresses as a subtree under
the “plain” word address. Configure transformations like word swapping for large integers and
floats, and byte swapping for character strings, per slave unit.

• Read and write word addresses in memory area #6, “File Records”, using Modbus function
codes 20 and 21 (0x16 and 0x17), with a configurable memory size per slave unit. Use prefix
“XR” for file record registers with all the normal word-register data type suffixes.

• Treat multiple sequential discrete input bits or coils (C and DI prefixes) as unsigned integer bit
fields, up to 63 bits long. Treat multiple sequential bits of single word registers (IR, HR, and XR
prefixes) as unsigned integer bit fields (up to 15 bits).

• Where protocol compatibility tweaks are required, like control over gap spanning and other
optimizations, the settings are configurable per slave unit. Where memory areas are configured
with specific address ranges, the configured gaps are automatically excluded from spanning,
allowing users to leave that optimization in place for other addresses.

• For client connections, script Modbus requests with arbitrary function and payload, and receive
the reply.

Two features of Ignition’s native driver have been omitted from this Advanced Modbus Driver:
• User-defined browseable address mappings, and
• One-based addressing.

The address mapping feature, which is the only browseable part of the native driver, conflicts with this
driver’s new generic browsing functionality. One-based addressing was omitted to ensure the
configurable address ranges were always unambiguous. As a convenience/reminder, the one-based
modbus address with classic prefix (0, 1, 3, 4, 6) is shown in this module’s browse text for each “plain”
memory area.
Finally, this module defaults to unit #1 instead of unit #0 when omitted from an OPC item address. The
Modbus Specification declares the zero unit address to be the broadcast address, and to not expect
replies when sending commands to unit zero. However, many devices do not obey this part of the
specfication, so this module will allow definition of unit zero as a real node.

https://modbus.org/tech.php
https://inductiveautomation.com/scada-software/
https://inductiveautomation.com/

April 17, 2025 17:37z
Advanced Modbus Module User Manual
Modbus Client and Server Driver Suite for Ignition

Modbus OPC Addressing
The OPC addressing formats for both of this module’s driver types (client and server) are compatible
with the addressing documented for Ignition’s native Modbus client driver, but with additional features
(Bit fields, eXtended Registers).

Supported Address Formats
Pattern Range Data Type Description

Cn 0 ≤ n ≤ 65535 Boolean Memory Area ‘0’, corresponding to 000001 through 065536.
Cn:m1 0 ≤ n ≤ 65535, 1 ≤ m ≤ 63 UInt64 => int8 Memory Area ‘0’, consecutive bits interpreted as a little-endian field.
DIn 0 ≤ n ≤ 65535 Boolean Memory Area ‘1’, corresponding to 100001 through 165536.
DIn:m1 0 ≤ n ≤ 65535, 1 ≤ m ≤ 63 UInt64 => int8 Memory Area ‘1’, consecutive bits interpreted as a little-endian field.
IRn 0 ≤ n ≤ 65535 Int16 => int2 Memory Area ‘3’, corresponding to 300001 through 365536.
HRn 0 ≤ n ≤ 65535 Int16 => int2 Memory Area ‘4’, corresponding to 400001 through 465536.
XRn2 0 ≤ n ≤ 655350000 Int16 => int2 Memory Area ‘6’, corresponding to 6000000001 through 4655360000.

Memory areas 3, 4, and 6 share multiple patterns. Use n as above except as noted, and prefix x=“I”, “H”, or “X” for the corresponding memory area:
xRn.m3 0 ≤ m ≤ 15 Boolean Single bit or word.
xRn.m:s1,3 0 ≤ m ≤ 15, 1 ≤ s ≤ 15 Int16 => int2 Consecutive bits of word interpreted as an LE field.
xRBCDn Int16 => int2 Converted from 4-digit Binary Coded Decimal.
xRUSn UInt16 => int4 Interpreted as unsigned.
xRFn4 Real32 => float4 Two consecutive words interpreted as IEEE 754 32-bit floating point.
xRIn4 Int32 => int4 Two consecutive words interpreted as a 32-bit integer.
xRUIn4 UInt32 => int8 Two consecutive words interpreted as an unsigned 32-bit integer.
xRIBCDn4

xRBCD_32n4
UInt32 => int4 Two consecutive words converted from 8-digit Binary Coded Decimal.

(Either form accepted.)
xRMI4,5 Int32 => int4 Two consecutive words converted from Schneider "Mod10, size=2" format.
xRM4,5 Int48 => int8 Three consecutive words converted from Schneider "Mod10, size=3" format.
xRML4,5 Int64 => int8 Four consecutive words converted from Schneider "Mod10, size=4" format.
xRDn4 Real64 => float8 Four consecutive words interpreted as IEEE 754 64-bit floating point.
xRLn4

xRI_64n4
Int64 => int8 Four consecutive words interpreted as a 64-bit integer. (Either form

accepted.)
xRULn4

xRUI_64n4
UInt64 => int8 Four consecutive words interpreted as an unsigned 64-bit integer. (Either

form accepted.)
xHRSn:m4,6 1 ≤ m ≤ 246 (subject to single read

word count limit)
String One or more consecutive words interpreted as pairs of ASCII characters. ‘m’

is the number of characters. If m is odd, the last half of the last word is
ignored.

Notes:
1 Not shown in OPC browse.
2 Files in Modbus are groups of 10,000 16-bit registers. The protocol allows files numbered 1 through
65535, for a storage area having up to 655,350,000 registers.
3 Bits and bit fields are written by a client driver using function code 20, Masked Write, which only
works with single words of memory area ‘4’, Holding Registers. In the client driver, these address
formats are read-only in memory areas ‘3’ and ‘6’.
4 Multiword data types may not span unconfigured addresses nor wrap around the end of the area, or for
memory area ‘6’, cross a file boundary. See the “Configuration” section of the drivers for more
information.
5 The registers in "Mod10" format are each expected to hold a value from 0 to 9,999 if unsigned, or
±9,999 if signed. See the Schneider documentation here.
6 The string address format is shown in OPC browse operations with length “2”. Adjust the OPC item to
the desired length after drag-n-drop, or construct the OPC path manually.

https://www.se.com/us/en/faqs/FA212766/
https://docs.inductiveautomation.com/display/DOC79/Modbus+Addressing

April 17, 2025 17:37z
Advanced Modbus Module User Manual
Modbus Client and Server Driver Suite for Ignition

Advanced Modbus Server
Ignition’s native Modbus driver module is a client only. It only connects as a master to one or more
slaves--devices and other systems (servers) that can respond to Modbus requests. This Advanced
Modbus Driver module includes slave functionality. Since the protocol is the same, Ignition gateways
running this driver module can accept connections from other Ignition gateways running the native
Ignition driver.
This driver constructs storage areas in memory, per configured slave unit and with configured sizes,
corresponding to the Modbus Application Protocol’s memory areas ‘0’, ‘1’, ‘3’, ‘4’, and ‘6’. At startup
it optionally restores the last saved contents of these storage areas. It saves memory contents to disk
upon normal shutdown, and optionally on a configurable time interval.
This driver listens for TCP connections on zero or more specified local addresses, using the expanded
protocol header. (The listen address may be the 0.0.0.0 wildcard, which listens on all interfaces.) This
driver can set up and open zero or more local (to the Ignition gateway) serial ports, and can make zero or
more raw RTU over TCP connections to remote serial ports. All of these connection types may be used
simultaneously. (Automation Professionals recommends Moxa NPort products in server mode for raw
RTU over TCP connections.)
This module does not support all function codes in the specification. It focuses on the function codes
most popular for data access.

Supported Function Codes
Operation Decimal

Code
Hex
Code

Read Coil Bits, Memory Area ‘0’, Prefix ‘C’ 1 0x01
Read Discrete Input Bits, Memory Area ‘1’, Prefix ‘DI’ 2 0x02
Read Holding Register Words, Memory Area ‘4’, Prefix ‘HR’ 3 0x03
Read Input Register Words, Memory Area ‘3’, Prefix ‘IR’ 4 0x04
Write Single Coil Bit, Memory Area ‘0’, Prefix ‘C’ 5 0x05
Write Single Holding Register Word, Memory Area ‘4’, Prefix ‘HR’ 6 0x06
Write Coil Bits, Memory Area ‘0’, Prefix ‘C’ 15 0x0f
Write Holding Register Words, Memory Area ‘4’, Prefix ‘HR’ 16 0x10
Read File Record Words, Memory Area ‘6’, Prefix ‘XR’ 20 0x14
Write File Record Words, Memory Area ‘6’, Prefix ‘XR’ 21 0x15
Masked Write Single Holding Register Word, Memory Area ‘4’, Prefix ‘HR’ 22 0x16

For the multiple element reads and writes listed above, the maximum quantities given in the protocol
specification are supported.
Note that the OPC driver connection to the emulated slave units bypasses these function codes, so it may
write to any data area. (Memory areas ‘1’ and ‘3’ would be useless if Ignition itself couldn’t write to
them.) This also means the OPC driver connection can write booleans and bit fields in all memory
areas.

Data Consistency
With multiple simultaneous client connections, along with the OPC driver connection to Ignition itself,
it is possible for multiple read and/or write requests to target the same bit or words in the same unit at
the same time. This driver avoids data corruption by synchronizing access to each memory area in each
configured unit. Only one request at a time will be allowed access to that memory area. As a further
optimization for the OPC driver connection, any operations submitted together will be sorted by unit and
memory area, then the corresponding lock held while those operations execute together.

April 17, 2025 17:37z
Advanced Modbus Module User Manual
Modbus Client and Server Driver Suite for Ignition

Modbus TCP
For this type of inbound connection, Ignition will open a standard bound listening TCP socket at the
specified addresses (optionally with a TCP port number) and will spawn actual TCP connections upon
demand. There is no artificial limit on the number of simultaneous TCP connections. Each actual
connection will allow multiple simultaneous requests and will use the header transaction IDs to manage
potential out-of-order responses. Note: This could result in a denial of service condition if exposed to
nefarious actors.

Modbus RTU (Local and Remote Serial)
Serial ports, both local and remote, will be treated as RS-485 connections and will ignore
requests/replies involving slave unit numbers that aren’t configured locally. This allows Ignition to co-
exist with other slave devices on a multi-drop RS-485 bus. For this to work correctly, Ignition must
know the serial port timing properties involved. For local serial ports, the baud rate, parity, stop bits,
and flow control are set to the specified values when opening the port. For remote serial ports via raw
TCP, the specified values must match the remote port’s actual configuration.

Device Settings
Each driver instance (Ignition “Device”) functions as one or more virtual slave devices. (How many
slaves are emulated and what each contains is described in the next section, Device Configuration.) At
driver instance creation, a single slave unit, address #1, is created, pre-configured with all possible
addresses in memory areas ‘0’, ‘1’, ‘3’, and ‘4’.

General
These are the settings all drivers have, required by
the OPC Server itself.

Communications
These settings control how the driver instance
communicates with external clients.
TCP Listening Addresses will use conventional
bound sockets accepting multiple simultaneous
connections. The following formats are accepted
(optional parts in square brackets):

• hostname[:port]
• ip_address[:port]

In a redundant server pair, the backup server will
use the list of addresses in Backup Listening
Addresses instead. In a redundant pair, only the
Active server will accept connections.
RTU Listening Ports identifies the local and/or
remote serial ports that this driver instance will take
control of and listen to. The following formats are accepted (optional parts in square brackets):

• hostname:port:baud[parity][stop]
• ip_address:port:baud[parity][stop]
• COMn:baud[parity][stop][flow]
• /dev/ttyXn:baud[parity][stop][flow]

Figure 1: Device Settings

April 17, 2025 17:37z
Advanced Modbus Module User Manual
Modbus Client and Server Driver Suite for Ignition

In a redundant server pair, the backup server will use the list in Backup Listening Ports instead. In a
redundant pair, only the Active server will open the given ports.
Drop Idle TCP Delay sets an idle timeout (in milliseconds) for traffic on any Modbus TCP connection to
the server. The default is ten seconds, matching the behavior of many devices in practice. Values below
five seconds are clipped to five seconds.

RTU Timing and Framing
In the above RTU connection targets, “baud” is anything over 300 that is physically supported. “parity”
is a single letter indicating Even, Mark, None, Odd, or Space—Even parity is the default if omitted.
“stop” is “1”, “15”, or “2”, where “15” represents 1½ stop bits—“1” is the default. For real physical
ports, “flow” is “H”, “C”, “R”, “DS”, “DT”, or “N”. “H” and “R” both represent RTS flow control. “C”
is RTS+CTS, “DS” is DSR-only, “DT” is DSR+DTR, and “N” is None. None is the default. Linux and
MacOS only support “N” or “C”. Windows supports all of the above. Software flow control is
forbidden by the Modbus specification. A colon or hyphen may be used as a delimiter between baud,
parity, and stop bit if ambiguous.
Each RTU connection will only process one request at a time, and the master on the channel is expected
to follow the specification for RTU timing with RS-485. Other slaves are allowed on the physical
connection, as master requests and slave replies with other slave unit numbers will be totally ignored.

Persistence
If Use Persistence is checked, this driver will save the memory contents of each configured slave in
binary files in the device’s home directory. This folder is located in your Ignition install folder, under
.../data/drivers/<device Name>. Files are saved on device shutdown, and restored upon device
startup. By default, they are also saved every thirty seconds. If Persist Interval is set to zero, save while
running is disabled.
No attempt is made to perform any other management of the binary snapshot files. Any missing
snapshots will simply yield zeros in the corresponding slave memory upon startup. Files orphaned by
unit deletion or renumbering will remain until manually deleted.

Device Configuration
The number and addresses and properties of the slave units
to be emulated are not convenient to edit in the device’s
Settings page. A separate page is provided to add and
remove slave units from your device’s emulation, and
individually configure the addresses and compatibility transforms for each unit.
As shown in Figure 2, the configuration page is reached by
selecting “More” in your Gateway’s Device List and
selecting “Configuration”. This leads to a summary of the
device settings, a form allowing configuration import and
export, and a summary list of configured slave units, as
shown in Figure 3.

Import/Export
The import/export format is a relaxed syntax CSV, where
string elements that do not need quotes for correctness may
omit the quotes. Exports include a header line, and it is

Figure 2: Device Configuration Menu

Figure 3: Device Settings Summary, Import/Export

April 17, 2025 17:37z
Advanced Modbus Module User Manual
Modbus Client and Server Driver Suite for Ignition

required on import to indicate the columns present and their order. Missing columns, other than UnitId,
are not an error on import.
Be aware that some field values only require quotes when multiple entries are present in that field
(because they then contain a comma). You may need to add quotes for such fields when you edit or
generate the CSV content directly.
Import completely replaces the configured list of units with the contents of the CSV file. The new list of
units will take effect on the next restart of the device. (A “Start or Restart” button is provided in the
Import/Export section as a convenience.)

Unit Detail Configuration
Below the import/export form is the list of currently
configured units. Immediately after device creation, this
list is empty. (The default unit #1 that starts up is entirely
dynamic.) The list shows each unit’s OPC transformations
and its configured address ranges, and offers links to add,
edit, and delete. Add and edit lead to a separate page where
the details can be supplied. Delete opens a confirmation
popup.
Coils, Discrete Inputs, Input Registers, and Holding
Registers can have multiple ranges of addresses configured.
These may be truncated for display in this list, with an
ellipsis indicating that there are more details available on
the unit’s “edit” page.
Strictly speaking, the “add” operation really creates and saves a default unit with the lowest unused
slave unit number, then opens the “edit” page for that new unit. The editing page allows changing the
unit number of a slave, but excludes other existing slaves from the dropdown selection list. When
“save” is selected on the editing page, the changes are made permanent, but like the import operation,
they don’t take effect until the device is restarted. This permits creating/editing multiple slave units and
having all of the changes take effect together.

Server Slave Unit Editing
The available configurable fields control the byte and word
swapping that occurs on the OPC interface to suit the
requirements of the clients that will connect, and control
the placement and quantity of the virtual addresses to be
emulated. Client requests for unconfigured items will
receive the standard error code for an invalid data address.
OPC access to units not configured or to addresses not
configured will yield bad quality for the subscriptions,
reads, or writes involved.
The Modbus specification does not standardize data types
other than 16-bit registers. There are a variety of
conflicting implementations. The OPC Transformations
section allows customization of byte/word order presented
to Ignition. Byte swapping for strings and word swapping
for integers and floating point values use the same
conventions as the native Ignition driver.

Figure 4: Slave Unit List

Figure 5: Server Unit Editing

April 17, 2025 17:37z
Advanced Modbus Module User Manual
Modbus Client and Server Driver Suite for Ignition

The Supported Addresses section controls the available addresses in the unit. Multiple discontiguous
ranges may be specified, except for File (eXtended) registers.

Automated Device Creation
Instances of this device type can be constructed with Ignition's native system.device.addDevice()
scripting function. Use "ModbusServer" as the device type ID. Use the following keys in the device
properties argument:

Key Data Type Content
mastertcp String Modbus TCP local listening IP address:port combinations, one per line.
masterrtu String Modbus RTU local serial and/or remote TCP connections, one per line.
backuptcp String Same functionality as "mastertcp", but applied to the backup server of a redundant pair.
backuprtu String Same functionality as "masterrtu", but applied to the backup server of a redundant pair.
dropidletcp Boolean Milliseconds to allow idle Modbus TCP clients to exist without traffic.
persist Boolean When true, save server content to binary files to establish initial values.
persistinterval Integer When greater than zero, auto-save server content every "x" seconds.
tframeplusser Integer Extra Serial RTU Framing Milliseconds
tframeplustcp Integer Extra RTU over TCP Framing Milliseconds
shortbrowse Boolean When true, simplify browse of certain 64-bit types
unitscsv String Complete configuration CSV as a multi-line string

One of "mastertcp" or "masterrtu" is required. All others have sane defaults.

April 17, 2025 17:37z
Advanced Modbus Module User Manual
Modbus Client and Server Driver Suite for Ignition

Advanced Modbus Client
This single driver type handles all Modbus Client connections, with multiple slave units configurable. It
supports all of the function codes and addressing features of the Server Driver, enabling symmetric
communications between Ignition gateways with this module.
During bursts of OPC requests, this client will round-robin through the slave units (if multiple slaves are
present). This maximizes utilization if any slaves have processing performance limits, and prevents
starvation of any given unit. Each unit can also be throttled by configuring a minimum inter-request
interval—it will be skipped in the rotation when the throttle applies.
As a further optimization, if a request times out, all of that slave unit’s queued requests will be canceled,
too. This gives that slave unit’s peers an opportunity to execute without repeated timeouts from a
failed/disconnected slave.

Supported Function Codes
Operation Decimal

Code
Hex
Code

Config
Notes

Read Coil Bits, Memory Area ‘0’, Prefix ‘C’ 1 0x01 Qty Limit
Read Discrete Input Bits, Memory Area ‘1’, Prefix ‘DI’ 2 0x02 Qty Limit
Read Holding Register Words, Memory Area ‘4’, Prefix ‘HR’ 3 0x03 Qty Limit
Read Input Register Words, Memory Area ‘3’, Prefix ‘IR’ 4 0x04 Qty Limit
Write Single Coil Bit, Memory Area ‘0’, Prefix ‘C’ 5 0x05 Used only when

code 15 limit is 0
Write Single Holding Register Word, Memory Area ‘4’, Prefix ‘HR’ 6 0x06 Used only when

code 16 limit is 0
Write Coil Bits, Memory Area ‘0’, Prefix ‘C’ 15 0x0f Qty Limit
Write Holding Register Words, Memory Area ‘4’, Prefix ‘HR’ 16 0x10 Qty Limit
Read File Record Words, Memory Area ‘6’, Prefix ‘XR’ 20 0x14
Write File Record Words, Memory Area ‘6’, Prefix ‘XR’ 21 0x15
Masked Write Single Holding Register Word, Memory Area ‘4’, Prefix ‘HR’ 22 0x16 If enabled, Booleans and

Bit Fields are Writeable

If the quantity limit for reading a given memory area is zero, or no addresses are configured “present”,
the entire memory area will be omitted from the browse for the slave unit, and the entire memory area
will be unavailable. If the quantity limit for either register memory area is less than four, 64-bit data
types will not be available. If limited to one, 32-bit types will not be available. Similarly, if writes to
holding registers are limited to less than four, 64-bit types will be read-only. If less than two, 32-bit
types will be read-only. As a special case, when the quantity limit for function codes 15 or 16 are set to
zero, the corresponding single-element function code will be used for all writes.
In addition to the function codes supported as OPC items, client connections can use any arbitrary
function code with any suitable byte array payload. See Scripting Arbitrary Modbus Requests, below,
for details.

Device Settings
Each driver instance makes a single connection. The target may have multiple slave units, just like the
native Ignition driver. Unlike the native driver, this driver will reject requests for units that are not
configured. How many slave units are configured and what each contains is described in the section
below. At driver instance creation, a single slave unit, address #1, is created, pre-configured with all
possible addresses in memory areas ‘0’, ‘1’, ‘3’, and ‘4’.

April 17, 2025 17:37z
Advanced Modbus Module User Manual
Modbus Client and Server Driver Suite for Ignition

General
These are the settings all drivers have, required by the OPC
Server itself.

Communications
This section selects the type of connection and the target of
the connection. The type may be Modbus TCP, Modbus
RTU Serial, or Modbus RTU via TCP. The following
formats are accepted for Modbus TCP:

• hostname[:port]
• ip_address[:port]

The default port for Modbus TCP is 502.
The following formats are accepted for Modbus RTU
Serial:

• COMn:baud[parity][stop][flow]
• /dev/ttyXn:baud[parity][stop][flow]

The following formats are accepted for Modbus RTU via
TCP:

• hostname:port:baud[parity][stop]
• ip_address:port:baud[parity][stop]

For a description of the parameters in RTU connections, see
the description of RTU Timing and Framing in the Server
Driver section above.
Live redundancy is supported for Modbus TCP by
specifying and additional target/port combination to be
opened simultaneously by the driver. The driver will
alternate connections for small batches of requests as long
as both are responding. This is not strictly the same as
load-sharing, but behaves similarly. Requests already
queued to a connection when breakage is detected will
receive an error response—there is no automatic requeuing.
A target/port combination may be specified separately for
the Backup Server in a redundant pair. If left blank, the redundant pair will connect to the same target as
the Master Server. When using live redundancy with server redundancy, the backup server may also
have a different target/port combination for live redundancy.
Concurrent requests may be used with Modbus TCP.

Other
The execution timeout for a connection, which applies to all units, is configurable.
See the RTU Frame Timing Adjustment discussion in the appendix for details of that setting.
If the driver instance needs to offer browse addresses that will also be used with Inductive Automation's
native Modbus driver, you should turn off the Short Browse Forms setting.
The Transaction ID Limit setting offers a work-around for broken Modbus TCP devices that do not
allow use of the full 16-bit integer range for transaction IDs.

April 17, 2025 17:37z
Advanced Modbus Module User Manual
Modbus Client and Server Driver Suite for Ignition

Modbus TCP
For this type of connection, Ignition will open a standard connected TCP socket to the specified
addresses (optionally with a TCP port number) and begin issuing requests as demanded by the OPC
server. If the Concurrent Requests setting is greater than one, that many requests will be issued without
stalling for a matching reply, and replies may indicate out-of-order processing with the protocol’s
transaction IDs.
As a special case for non-compliant devices, if the Concurrent Requests setting is equal to one, any
mismatch between the transaction ID sent and that in the reply will be ignored.

Modbus RTU Serial
A local serial port will be setup with the given timing and framing properties and opened on startup, and
then treated as an RS-485 connection. Reply framing and timing per the specification will be enforced.
Non-compliant replies will be discarded (generally resulting in a timeout).

Modbus RTU via TCP
A raw TCP connection to a remote serial port will be opened on startup, and then treated as an RS-485
connection. The timing and framing properties specified with the target address/port must match the
remote port’s actual configuration. Reply framing and timing per the specification will be enforced.
Non-compliant replies will be discarded (generally resulting in a timeout).

April 17, 2025 17:37z
Advanced Modbus Module User Manual
Modbus Client and Server Driver Suite for Ignition

Device Configuration
This device uses a separate set of pages to configure slave units allowed and their properties. Its main
page for summary, import & export, and the list of configured units, is virtually identical to the
configuration described above in the Server Driver’s Device Configuration section. As for the server
driver, OPC access to slave units not configured or to addresses not configured will yield bad quality for
the subscriptions, reads, or writes involved. Note that changes to the list of units and the per-unit
settings will take effect on the next restart of the device. (Opening Device Settings and selecting “Save”
without any changes will do this.)

Client Slave Unit Editing
Client unit details have the same slave unit address, OPC
transformations, and supported addresses configuration
sections as shown in Server Slave Unit Editing above. The
client driver also offers adjustments to accommodate slave
unit limitations. Unlike the native Ignition driver, these
limits are specified separately for each slave.

Read Request Optimization
The Span Gaps option is available to prevent the the driver
from combining requests that read nearby addresses if there
would be intervening addresses not used. In this driver,
this is not needed if troublesome addresses are omitted
from the configured range.
Read requests for memory areas ‘0’, ‘1’, ‘3’, and ‘4’ may
be restricted to smaller quantities than the specification
would normally allow. If tightly restricted, this may also
impact some datatype support, which would be reflected in
the OPC Browse for the slave unit. See the Supported
Function Codes section for details.
Some target devices are known to only partially support the
specification for File Records (aka Extended Registers, area
6), and will report errors (or crash the connection entirely)
if multiple register groups (contiguous spans) are present in a single request. Turn off the Allow
Multiple Groups option to work around this defect in such devices’ implementations. There can be a
substantial performance penalty if this option is turned off.

Write Request Options
Write requests for memory areas ‘0’ and ‘4’ may be restricted to smaller quantities than the specification
would normally allow. If tightly restricted, this may cause some data types to be read-only.
The Masked Writes option may be disabled for slave units that do not support it. In this case, the bits
and bit fields of Holding Registers (memory area ‘4’) will be read-only.

Automated Device Creation
Instances of this device type can be constructed with Ignition's native system.device.addDevice()
scripting function. Use "ModbusClient" as the device type ID. Use the following keys in the device
properties argument:

Figure 6: Client Unit Editing

April 17, 2025 17:37z
Advanced Modbus Module User Manual
Modbus Client and Server Driver Suite for Ignition

Key Data Type Content
framing Enum One of "MODBUS_TCP", "MODBUS_RTU_SERIAL", or

"MODBUS_RTU_OVER_TCP"
hostname String Target in the format required by the chosen framing.
althost String Same functionality as "hostname", used to open a live redundant channel.
backuphost String Same functionality as "hostname", but applied on the backup gateway of a redundant

pair.
altbackuphost String Same functionality as "althost", but applied on the backup gateway of a redundant pair.
maxoutstanding Integer Concurrency for Modbus TCP
exectimeout Integer Milliseconds to wait for responses, per request.
tframeplus Integer Extra RTU Framing Milliseconds
shortbrowse Boolean When true, simplify browse of certain 64-bit types
txidlimit Integer Transaction ID rollover limit, to accommodate broken devices
unitscsv String Complete configuration CSV as a multi-line string

Just "hostname" is required. All others have sane defaults.

April 17, 2025 17:37z
Advanced Modbus Module User Manual
Modbus Client and Server Driver Suite for Ignition

Scripting Arbitrary Modbus Requests
Client connections may process arbitrary requests
using the rawModbus function in Gateway Scope.
This function is normally asynchronous, returning a
standard java CompletableFuture. The caller would
use the .get() method, or one of the other standard
asynchronous forms, to obtain the response.
The response will be an Ignition QualifiedValue,
with one of the following formats:

• Success. The quality will be good and the
value will be a byte array containing the
actual response.

• Failure, reported by the target device. The quality will be bad, of a suitable type if possible. The
value will be an integer containing the error code supplied by the target device.

• Failure, reported by Ignition. The quality will be bad, of a suitable type. The value will be
null/None.

This function can also throw an immediate Exception, particularly when the named device doesn’t exist
or isn’t enabled.
The following example shows how to re-implement a read of HR4 through HR10 with function code 3.

Figure 7: system.opc.rawModbus(name, unit, func, payload, rspLen)

Submits the Modbus request constructed from the given unit, function code,
and payload to the named device connection. The response must have the
specified length (after the echoed function code).

Returns a java CompletableFuture, that will yield an Ignition QualifiedValue
when the response is received or an error occurs.

Argument Data Type Description
name String OPC Server Device Name
unit int Slave Unit Number to target. Does not have to

be a configured node. 0-255
func int Modbus Function Code. 1-127
payload byte[] Request content. Supply a zero length array if

not needed. Up to 252 bytes.
rspLen int Number of reply payload bytes. 0-252
Keyword-style invocation is not allowed. All arguments are required.

Figure 8: Example use of system.opc.rawModbus()
from java.io import ByteArrayInputStream, ByteArrayOutputStream, DataInputStream, DataOutputStream
from com.inductiveautomation.ignition.common.model.values import QualifiedValue

Raw implementation of read multiple registers, function 3.

def printHR4to9():
Start by constructing the payload of the Modbus PDU. It is
a UINT starting address and a UINT number of registers (<=125).
baos = ByteArrayOutputStream()
dos = DataOutputStream(baos)
dos.writeShort(4)
dos.writeShort(6)
dos.flush()

future = system.opc.rawModbus(‘someDevice’, 1, 3, baos.toByteArray(), 13)
The following blocks until the response comes back or the request times out.
QV = future.get()

if QV.quality.good:
bais = ByteArrayInputStream(QV.value)
dis = DataInputStream(bais)
print "Bytes to follow=%d" % dis.readByte()
print "HR4: %6d" % dis.readShort()
print "HR5: %6d" % dis.readShort()
print "HR6: %6d" % dis.readShort()
print "HR7: %6d" % dis.readShort()
print "HR8: %6d" % dis.readShort()
print "HR9: %6d" % dis.readShort()

else:
print repr(QV)

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html

April 17, 2025 17:37z
Advanced Modbus Module User Manual
Modbus Client and Server Driver Suite for Ignition

Moxa NPort Application Notes
The Moxa family of remote serial port devices is popular, and is used in Automation Professionals’ test
lab. In general, remote serial ports using TCP connections must balance character buffering against
latency. The default settings for a port in Moxa’s “TCP Server” mode are not suitable for Modbus RTU
timing. Specifically, if a Modbus request or reply received by the physical serial port is split into two
separate TCP packets, the timing criteria for Modbus RTU are unlikely to be satisfied. To make it
accumulate a complete request or reply, and transmit it as a single packet, set the Moxa Port’s “Force
Transmit” setting to the millisecond value from the following table:

Baud Rate Force Transmit
Milliseconds

300 55
600 28

1,200 14
1,800 10
2,400 7
4,800 4
7,200 3
9,600 2

≥ 19,200 1

The calculation is 1000ms
baud

∗11∗1.5 , rounded up, from the T1.5 quiet factor in the Modbus

Specification.

See also the following section on Serial Ports and the possible use of the “Extra RTU Framing
Milliseconds” device setting(s).

April 17, 2025 17:37z
Advanced Modbus Module User Manual
Modbus Client and Server Driver Suite for Ignition

Linux Serial Port Application Notes
The Linux Operating System’s standard for interfacing with system serial ports has unfortunate legacy
behaviors that prevent those ports from working well “out of the box”. The jSerialComm library has
worked around some of these limitations, but external adjustments are needed, too.

Low Latency Mode
First, the serial devices must be placed in low latency mode via the setserial utility. The most
common commands would look something like:

setserial /dev/ttyS0 low_latency
or

setserial /dev/ttyUSB0 low_latency
For USB devices, this command will be needed every time the port is unplugged/reconnected. A rule to
make udev do this for you would look something like this:

KERNEL=="ttyUSB0", RUN+="/bin/setserial %E{DEVNAME} low_latency"
(Save that as “/etc/udev/rules.d/97-usb-serial-low-latency.rules” or similar.)

Serial Device Access Privileges
Next, the ignition user account (or whatever user runs the Ignition gateway service) must be added to the
group controlling access to these devices. On most Linux distributions, this is the dialout group. This
will work in most cases (executed as root):

adduser ignition dialout
Be sure to restart Ignition after changing group membership—it doesn’t take immediate effect.

RTU Frame Timing Adjustment
Finally, within Ignition, if you are having trouble with timeouts waiting for responses, temporarily set
the ModbusRTUComms logger to DEBUG and look for “Discarding packet due to gap”. Adjust the
Client Mode device setting “Extra RTU Framing Milliseconds” to accommodate the actual latency for
your situation. In Server mode, there are separate settings for RTU over TCP versus local Serial Ports.

