RIUVONRATION

PROFESSIONALS
Lc

Ignition EtherNet/IP Module User Manual

EtherNet/IP Communications Suite

Version 2.1.19-v81
September 23, 2024

This EtherNet/TP™ Communications Module for Ignition™ adds multiple
OPC driver types to Ignition’s native OPC server, with support for Generic
EtherNet/IP Client connections, “Class 1’ I/O device emulation for use
with external 1/O scanners, “Class 17 I/O scanner operation for use with
external I/O adapter hardware, and a variety of related PLC messaging
support.

~

momn'ﬁom)

September 23, 2024 [UTORBGN
Ignition EtherNet/IP Module User Manual e
EtherNet/IP Communications Suite

Table of Contents

L OVETVIBW. ..ttt ettt et e b et s h et e e e h e bt e st s bt e bt et e eh e e bt ea bt eh b e bt et e eb s e bt et e eatenbeeeanees 5
L1 INEW FAUIES OF V2. X, uiiiiiiiiiieie ettt et s e et e et e e bt e s b e ebeestbe e baeesseebeeesseenseesssaasseessseassaaasseensaaanseenseessseensaessseesaannsns 5
1.2 Generic CHENt DITVET FEAUIES........cccuiiciiiiiieiieeie et eie et sttt e sttt e e taeebeesebeebeessbeesseessseesssassseesaeasseenseesssaeseessseensaannnns 6
1.3 Generic Host Driver FEatures (AQAPLET)......cc.viieriieierieeierieeiesiteteeteeteettetesstessesseessesssessesssesseessesseessesseessessseesnseesssssensseens 7
1.4 Enhanced Host Driver FEatures (SCANMET)...........ccuieieriirierieieeriesiesiesteeeteteete e seeesseessesseessesseensesseensesseessesnsesssnseessseenns 8
1.5 PLC Feature CompatibDIility MALIIX........ccveevirieriiiiesiiitesieetesteetesteesesseesesseessesseessesssessesssessesssassesssesseessesseessesseessesseesseenns 10
1.6 Firewall and Networking REQUITEIMENLS.ccceiieiieriiiieiieeieseeteeeeteeteeteeteessesteessesseesseessesseessessesssessaessesseessesseesesssseens 11

La60.1 POTES ..ttt ettt ettt ettt e e e bt e e ekt e a e e bt e a et e h e et e e h e e bt e et e ARt e et e e bt e a b e e Rt et e eh e et e en e e bt enteebeenteenee e beeennneas 11
L1602 ROULES. ...ttt ettt ettt e a et e et e s bt e et e e bt e a e e bt em e e bt em bt e bt et e es e e sbeemteeb e emtesbeem bt ebeembeeb e et e ebte bt e e eateeennnees 11

2 CHENE DIITVET ..ttt et ettt e bt e st e e bt e s et e e bt e eat e e bt e sabeeasbeeeensbeeeensaeeeannee 13
2.1 SEUINES. .. eeuvieeteteetteete et e st et et e e b e e te et e e te e st ete e be e st esseessesseesseaseessessesseessesseessenseess e st esseeheesaeeteenbeessenbeeesenbeetseteesbeeensreennreennns 13
2.2 CONTIGUIATION.cuvitieitietieteeeiete et e eteette e st eteeteessesteesbeeseesseessasseess e seessaassessesseesseeseesseessesseessessaessanseessensaesseaseensessaensenseesseenns 13
B 0) o O 11153 1o TSRS SRRUPRRTSRNt 14

3 Client Driver APPLICAtion INOTES.......ccccuiieiiiieiiieeeieeeiiee ettt e eieeeetteeeteeesbeessaeeessseessaeesesnsseeeesesnnssneeens 14
3.1 Allen-Bradley ControlLogix & COMPACTLOZIX......cceerueruierierierieeiesiieiesteeeesseeeesseessesseessessaessesssessesssessesssessesssessesssesseenes 14

3.1.1 Predefined Data TPES.......co.veriiiieiieieettee ettt sttt ettt ettt et b ettt e st e bt et e s bt e bt satenbeestesbe e st e n bt enteebeenbeeaeennbeeens 15
3.1.2 T/O MOAUIE DAtA TYPES....cuviiviieriiieetieiietiettesteettesteetesteestesteessesteessesseesseessessaassesseassaseessaeseessesssessesssessessssessseessssensnns 15
3.1.3 AQd-0MN INSIIUCEIONS. ... eeeviiiiieiieeiieecteeete et tesbeesteesebe e teeetseeteesssaesseessseesseeasseasssassseessseassaassessseessensseessseesssseeesssssaeeenn 16
3.1.4 Structure ALGNMENTt RULES........cooiiiiiiiieeee ettt ettt et h et e et e e st et e e et e e e bt e e emaeeenneeennees 16
3.2 Allen-Bradley MicroLogiX 800 fAmILY........cccecuirieriieieiieienit ettt sttt et et s eseeseesseeneesseensesseensesseenseennes 16
3.3 :0mMION NI/NX FAMILY...c.vitiiiiiiiee ettt ettt sttt sttt et et ea et e bt e bt e bt saesbe bt bt st et b e e enteeabeenneen 17
3.3.1 Structure ALIGNMENt RULES........cccueiiiiieiieiiieeie ettt et e st e et e s bt esaesaeessesseessesseessasssessessseseessassseesssesenssessssesanns 17
3.3.2 Structures with User-defined Member OffSEts.......cc.couiiiiiriiiiiiiiiiineresee ettt st s 17
3.3.3 OMMION SEIIMES . e uteteeitetieteettet ettt ettt et st e e e s bt e et s bt ente e bt e bt eb e et e ea e e bt eateebeemeeebeemtesaeemeeeb e e bees e e bt eneenbbeeeabeeeneeenateesnne 18
3.3.4 OMION BOOICANS.cuiiuiitiitiittite ettt ettt ettt e bttt ettt et et e et et enees e e st es e ebeebesbe et e ebeebestensenbensensentenaeanaeans 18
3.4 CIP AUTIDULE ACCESS. . uieuieiurieiteeeieestteeteesteesteesseaseseesseaasseaseaasssasseesssaasssessseasssaasseessaeassessseessseasseessseanseessseassessssesssesssseeens 18
R B 1Yo (<IN 13 Lo 01O 19
3.4.2 COMPLEX AIIIDULES. ... eeueeriieiietierteeteste et este st et e e te bt esae st esse st estesseenseeseansesssessesssesseessensesnseseansenseensenseensesnsansesnsesseenns 19
3.4.3 OPC BrowSINg Of AtIIIDULES.c..cveteuieiieiiitietieerte sttt ettt ettt ettt sb ettt sa ettt e b et et entebeeueebeebesbesbeseenneens 19
3.4.4 POIING /O ASSCIMDIIES.ccvieiiiitieiietieiietteteetesteetesteestesteestesteessesseessaeseesseessesseassesseessesseessesseessesssessenssensenssessnsesanns 19
R G5 T QA 21 1111 2RSSR 20
3.5.1 OPC BIOWSIIE. . ..eeutetienieitieie ittt ettt ettt ettt et s ae e bt s a e e bt e bt e bt e st e bt es s e bt em b e b e eneeeb e em et es e e bt estenbeestenbeemteabeensensneeans 21
3.5.2 Communication Buffer OptimiZation..........c.cceecuiiuieeiiiieiieeetieeesteetesteeeesteesesteessesteessesseessasseessesssessessesssessessssesenes 21
3.5.3 REQUESt OPHITIZATION. ...c..eeutieiietieeieete ettt ettt ettt ete et et e ea e et e es e e et ene e st enseeseeneeeseeneeeseeseemeenseemeenseensennseeenneeenneas 21

4 HOSE DITVET ...ttt h e et h ettt e s bt e et e e ebe e eabeesab e e bt e ebbeeabeesaeeenbeeeaees 22

4.1 SEUINES. .. eeuveeeeetieeiesteetesteetesteeteeteesbeeseesseeseesseeseeseassesseassessaessesssessenssesseessenssassanseassesseassesseensesssenseessenseessenseessaeensseennneennns 22
4.1.1 Local LiStening IP AdAIESSeS.couteuiiriieiieiieit ettt ettt ettt ea et et e steeaeesbeemeesbeemtesbeenaeeaeeesmaeeeneeens 22
4.1.2 Backup LiStening IP AdAIESSES.cerueiuierieiieieeiieieetet ettt sttt sttt st b et b et bees e sbe et e eaeenteeateesmaeeenneeens 22

4.2 CONTIGUIALION.ueuitiieitietietert ettt ettt ettt ettt b bt b et b ettt e st et esees e eaeebeeb e e bt sae e bt b et e se e b et et e st ensemteneebeebeeueebeabenaesene 23
4.2.1 Default CONTIGUIALION.ciuiiiiitieieetietiet ettt ettt et e st e te et e e e et e e bt es e e et esee st emeeseeemeesaeemseemeenseeseenteeneenseeneanseeneenneens 23
4.2.2 Configuration XIML FOIMAL..........cccciiiieriiiierieiieseetestete et eteettestesstesseeseesseesaesseessesseessesssenseassenseessessseesnseessssessseenn 23
4.2.3 RUNLIME CONTIGUIALION.cuiitiiiieiieiieieitete st et e st e et e e sitebeseeeteesaesseessesseensesseensesstensesssensesssensenssensennsenseensaeenssens 24
4.2.4 Data TYPE EMUIALION.cciiiiiieiiiietieiesieet ettt ettt ae st ebeeteesbeess e besssesseesseeseessesseessessaessesssesseessesseessesssseesssenns 24
4.2.5 TaZ EMULALION.cuviitieiieieit ettt ettt ettt et e e te et e eteebeeseesseestesseesaesseessasseessasssesseassasseessanseessesssessesssessessnensesssensens 24
4.2.6 CIP ASSEMDLY EIMULALION.cueiitiiiiiiiiieitieteet ettt ettt st b et b et eb et eae e bt et e sbeeneesaeensesmeenbeeneennees 25
4.2.77 T/O MOQUIE SCANMING.ceteiietiiiietieiieite ettt ettt ettt ettt esteeaee s bt e ateebeesteebeeaeeebeente et ee bt eaeesbeemtesbeemaesabaeesateesnaeeenneeens 26

R (S A D) 4 L) SRR 26
ST SEEINES. c.eeuvevieuteettete et et e et e e teeteeteesbesteesbeeteesbeese e beesa e beess e bees s e eh e e st e eaeeR b e eRt e beeRt e beesb e beetb e be et be bt enbeeteenbeereenseeneeentreensreeentes 26
5.2 CONTIGUIALION.vtitieiieeieteetete et et et e ste et e eteesbe e st esbeeseesseeseasseeseeseassesssessessessasaessaessassaessesseassesseessasseansesseessesssensesssensenssns 26

6 Host and Target Driver Application NOTES........cc.eieriiiieriieeciie ettt eee e e e e e eeaeeeesaeee s 28
6.1 USING PaSSIVE TAIZEL I/O......cueiiiieiieiieieiteie ettt ettt ettt e et e te e st e e teesbessaesse e st esbeessessaessenseesseaseessessaensaesnseeensseensses 28

6.1.1 Solo I/0 Module Emulation with LOZIX PTrOCESSOIS.cc.ciiiieriirieiiieieeieieeiesteeeeesteseeesseesesseessesseessesssensenssensenseens 28

Page 2 of 67

September 23, 2024 [UTORBGN
Ignition EtherNet/IP Module User Manual e
EtherNet/IP Communications Suite

6.1.2 Multiple I/O Module Emulation with LOZIX PrOCESSOTS.cccovieriiiiiiieiieieiieieeeereeeeereeeesreeseesreeae e esseessseeessaeees 30
6.1.3 Redundancy CONSIACTALIONS...........c.eiuerrierierterietieeesteetesteetesseestesseessesseessesssessesseessesssassesssessesssesseessesseessessssessssessnns 32
6.2 USING PASSIVE IMESSAZINE....c..eeteeuiitieieetieie sttt et et et ettt e bt ea e bt esee et e eaeesaeenbesaee bt eae e beeseebeemtenbeemteabeemteeseenteesmbeeenneeennnes 32
6.3 USING PrOQUCET TAZS.eetiiiieiiiieiteete ettt ettt et h et s b et s b et eeb e e bt ea e et e e st e sbeemeeebeemeesbeenbesaeenbesbtenbeentanbeennee 32
6.3.1 Producing t0 LOZIX SHUCTUIE TYPES. ...uteieriieieeiieieeiieie ettt ettt sttt ettt et e st et e s et e e e s st ensesseesesneensesneeseeneeseenneeennes 33
6.3.2 Producing Data State Change EVENTS.........ccoiiiiiiiiiieieeee ettt sttt ettt et e te et eeaeeneeeneeeenneeennes 33
6.4 USING CONSUIMET TAZS.....cvieiiitieieiieieitteteeteteetesteete st estesseessesseessesseessesssessesssenseassasseessesssansesssensesssensesssesesssensenssensessnns 33
6.4.1 Consuming LOgiX StrUCIUIE TYPES....cueeveruirieriieieeiieiesieete st eteeteetesstesseeseesseeseesseessesseensesseessesseensesssanseessenssessnsesanns 33
6.4.2 Consuming Data State Change EVENLS.........ccocciiiiiiiiiiiieieeiesteteetet ettt ettt ve et s reeaesteessessaesbesssessessseeesseenes 34
6.5 USING ACLIVE I/ SCANMING........eciviiieitieiieiieteetiesteettesteetesteetesteesesseessesseessesseessesssesseassesseassesseessesseessesssessesssesesseesnseenssns 34
6.5.1 Target Module Electronic KEYING........cc.oeiiiiiiiiiieeieee ettt sttt e e st b e s e bt e et e ebeeesnteeenee 34
6.5.2 Target Module Connection DEtail...........cooiiiiiiiiiiiiieeeee ettt sttt sttt st e b et ettt e et eenbeeesateeenee 35
T T 3 e A (o TG L (N I TSR 36
6.5.4 Monitoring and RUNtIMeE AQJUSTINENL.cc.iiiiiieieeiiee ettt ettt ettt et ettt esaeeteseeesesneeseeneesmneeennes 36
6.5.5 RedUNAAanCy BERAVIOT.........ccooiiiiiiieiiieie ettt ettt esae st esae s st essessseseesseseessensseeansaeenssaesnsaennns 37
6.6 Using the I/O MomMENtary BULtON.cccueiiiiieiieieciieieciieie ettt ettt et e e e bessaesbeesaenseesaeseensesseensesseenseennses 37
7 Host and Target Drivers’ Functional DeSCIIPtiON.c.cecuieiiierieeiiienieeiieeie et este et sineeeeireeeesaee e 38
7.1 Object Classes, InStances, and ATTTDULES.cceiierieriereeiere et eee sttt et e st e sttt e st e tesseeseensesseesseseensesseensesnseesnseesnnes 38
7.2 EtherNet/IP Encapsulation i TCP/IP........cc.ooiiiiiiieeeee ettt ettt e e esee et e e neeeenneeenneeennees 39
7.3 EtherNet/IP Encapsulation in UDP/IP.........ccccociiiiiiiiieeeete sttt ettt st sttt 39
8 Element Path SE@MENTS.ccuiiiiiiiiiiiiie ettt ettt st e 41
8.1 Path Segment Strings and ENCOQINES.ceouiiuiiiitieiieiee ettt ettt ettt et e e bt et esae et e sbeeemteeeneeas 41
8.1.1 Element Path String fOIMALS.c.ccveriieieiieieieeiestt ettt ettt ettt e sse et e eseesseeseeseesaesseensesseensesseensenseensennnes 41
8.1.2 Segment Type TOKENS INAEX.......cceeiriiiiiriiitiretee ettt ettt ettt ettt b s bbbt s e 42
8.1.3 Segment TYPE COde SUMMATY........cocciiriieieiiieieetieteeeeste et et e eeestestestesaesseessesseessessaessesseessesseessesssessesssessssesessseensses 43
8.2 ROULE Path SCEIMENLS.......ceiiiiiiieiieiietietietete ettt ettt et et e st e te et e teesbeeseesseeseessessaessesssesseassessesssensaessensaessenseensaeenssens 44
821 POIT SEEIMEINES. ...c..eitiiuietieiieit ettt ettt ettt et e st e et e s bt et e sbe et e s bt em b e sb e et e es e et e eae e et eme e bt emtesbeemtesbeentesbeenbesbeesmneeennes 44
8.2.2 EleCtroniC K@Y SEZIMENLS......cc.eccviiuiiiiitieieitieteeteeteeteeteeteesteeeesteestesseessesaeessesseessesseessesssesseassessesssassessssseesssessssesessses 44
8.2.3 Network Parameter SEEIMENLS.c.oeouiiieiieieie ettt ettt ettt et e e st et e esee et eseesaeemeesseenseaseeaneeeemseeenneeennns 44
8.3 Application Path SEZMENLS.couiiiiiiiiiiiee ettt ettt ettt et et e ettt e e e bt e bt eae e bt st e teeneebeeneeenee s 45
8.3.1 Numeric Logical and Extended Logical SEMENLS.........c.cccveriirieriiieniieiesieeiesieeiesteete st ete s eeesseesesnseesneeenneenens 45
8.3.2 Indirect Extended Logical SEZMENLS........c.ccceeiriririiriririieeret ettt ettt sttt ettt et eb e bt b s 45
8.3.3 Symbol and Data SeleCtion SEZMENLS.........c.ccvecuerieriirierieieeriesterteseesteeeesteesesseessesseessesseessesseessesssessesssessesssessseesnnes 46
8.3.4 SPecial SYMDOL SEZIMENLS......ccueeiierieiieietieiete ettt st este st e st etesteebesseessesseessesseessesseesseassessesssessesssessenssseessseesnsseensses 46
8.3.5 Keyence APPLICation Pathis.cc.ooiiiiiiiiiieeee ettt bbbttt et 47
8.4 Data DefINItION SEZIMENLS........cccviiieriiiiertieteiteeteeteeteeteetesteeaeeteesesseesseessesseesseseessassaessasseassesseessesssessesssessesssessesssessensses 47
8.4.1 Elementary Data SEZIMENLS.ccuiiierieieiteeieiteeteetiete et te st e et te it este et eseesseeneesseenseese e seeseenseeseenseeneenseensenseensesneeneesneanns 47
8.4.2 Predefined StruCtUIe SEZIMENLS.ceiuiiieitiiieitiete ettt ettt et a ettt et e et e s bt e ee e bt e te s bt emteebeenteebeenteeneeneeeneeneeenes 48
8.4.3 ALTAY PrefiX SEEIMENLS.......ociiiiiiieiiieieeiiete ettt ettt ettt et et etesee e e e st e e beestesseestanseessenseeneeseenaesseensesseensesseensensaensennnes 49
8.4.4 Structure Definition SEZIMENLS.ccueitriiiiiriririerenterert ettt ettt ettt st sttt et sae sttt et et et ebtesbeeabeebeenaeenaeeneee 50
8.4.5 INdirect REference SCZMENLS.......c.ccvieiiriieieriieieeit et ete ettt e st ete s e e beste e beesaesseessesseessesseessesseensesssessesssessesssesnseesnsns 51
8.5 AILCIMALE SYNTAX.....eevietietietiertietesteetesteetesteetesteetesseessasseesseessesseassesseassessassesseassesseansesssessesssensesssensenssenseassassnssesrsseesnseens 51
8.6 Testing ElEMENt Pathis......cc.ooiiiiiiiiiiei ettt sttt s b et s b et e bt et ea e st e eatesbe e embeeebbeesabeeeaeeas 51
O Interpreting EDS FAles.......ooiiiiiieieeieeeie ettt ettt et ettt et e ebeessbeessbeeeensseeesnsaeeeennns 54
L2 I 15311 172 TSRS 54
0.2 CONNECTION OPLIONS. .. eeuvieierieriestiettesteestesteestesteesesseessesssessesssesseassasseassesseessesssessesssessesssessesssessesssessesssessesssesseessessseessseensses 54
0.3 CONNECHION DIALA.etitiieieteiet ettt a bbbt e b e bt sttt e st et e st et e st es e eb e e bt ebeeb e e bt sb et e be s s et e enbeenneenneen 55
0.4 ASSCIMDLY STITUCTUIES.eveeuteitieteet ettt ettt ettt ettt et et et e s bt et e sb e e bt es e et e es e e bt emeeeaeemeeeseemeeeaeenbesaeenbeeseenbeentesbeesnneeennees 56
10 Scripting Features and FUNCLIONS.cciiiiiiiiiiiiieieecie ettt ettt esieeebeesaeessbeessaesnsaessaeens 57
10.1 Custom JYthon Code MOAUIES..........cceiiiriiiieiieieiieieet ettt sttt e e sste st e et et e essesseesseeseensesssensesssessesssensenssensenns 57
10.2 JYthOn Diata EVENLS.......eeiiiiiiiiieeieeiieeieeeite st e ste et e stte et esteesebeesteesabaessaessseesseasseenseessseensessnseenssessseessseesseenssesnsseeesanssens 57
10.3 CIP MESSAZING ACCESS. . cuveveerreireereeteeteestesseassesseassasseessesssessesssessesssessesssessesssessesssesssessesseessesssessesssessesssessesssessesssessesssenns 59
L1 TrOUDIESNOOING. ...c.evieeieiieeiiie ettt ettt e et e et e e et eeesbeeessaeeensseeensaeeeeessssseeesensnsaeeeens 61
11.1 OPC TaG SUDSCIIPLIONS. ...cuvivieiieeietieeiesteeteettetesteessesseessesssesseessesseessasseessasseessesseessesssessesssessesssessesssessenssessesssesseesseessenaes 61

Page 3 of 67

September 23, 2024

AUTORAMION
Ignition EtherNet/IP Module User Manual 7
EtherNet/IP Communications Suite

11.1.1 Stale Data from a HOSt OF Target DITVET........c.cccieviiiieriiiierieeieiieete sttt ettt te e stesteesseesaesbeesbesseessesseesseessessseeans 61
11.1.2 EXCESSIVE SUDSCIIPIIONS.ieuiertieeiiitieieiieeteiteeteetteseesteseesseseessesseessesseessesssessesssessesssensesssessesssesseesssessssesansseesseesnns 61
11.2 Scanner CONNECTION EITOTS.ccuiiiiiiiiee ettt ettt ettt et ettt e s bt et e sb e en e e b e en b e ea e e et eseenaeemeesbeentesbeeennaeens 61
12 Allen-Bradley Logix FIrmware Variations..........ccccceerveeeiierieeiieeniesreeseeeseesseesseesseessseesseessseessesssneens 64
12.1 E1emMENtary Data TYPES.....ecveetieieetieierieiestestestestesetesteessesseessesseessesseessesseessesssessesssessesssessesnsenssensesssensesssesseensessesssessseens 64
12.2 Predefined SrUCTUIEA TYPES.....cviirieiiiiieieieesteeteteetteste et e steesteeteeseeteessesseessessaesseessesseessesssessasssessenssasseessesseessesseessessneens 64

Page 4 of 67

September 23, 2024 [UTORBGN
Ignition EtherNet/IP Module User Manual e
EtherNet/IP Communications Suite

1 Overview

The EtherNet/IP Communications Suite Module enables Inductive Automation’s Ignition platform to
communicate with select Allen-Bradley™ and Omron™ devices, including processors and input/output
modules, with tag-based polling and the robust UDP-based networked 1/O protocol subset.

The implementation conforms to ODVA'’s EtherNet/IP Specification, versions 1.20 through 1.29, along
with ODVA’s Common Industrial Protocol (“CIP”) Specification, versions 3.19 through 3.31.

The module is available with various combinations of features, allowing the cost to be tailored to the
end-user’s requirements. (All features enabled in Trial mode when unlicensed.) The variants are:

* Generic EtherNet/IP Client Driver, for polling Allen-Bradley’s ControlLogix™,
CompactLogix™, and MicroLogix™ 800 processor families, Omron’s NJ/NX processor family,
and parameterized EtherNet/IP devices with Electronic Data Sheet files (not brand-specific).
This driver is a classic request/response driver using EtherNet/IP “Class 3 TCP/IP explicit
messaging connections. This driver browses the target device for tag symbols, structure types,
and standard class instances.

* Generic EtherNet/IP Host Driver permitting external PLCs to treat Ignition as one or more
networked I/O adapters, implementing the “target” end of EtherNet/IP “Class 1” UDP/IP
implicit messaging connections. One or more local IP addresses may be used as listeners,
supporting multiple subnets on the Ignition Gateway using . These two drivers transfer I/O
assembly buffers to/from structures and arrays and singleton tags modeled after a Logix
processor’s hierarchical tags. These two drivers will respond to external devices’ explicit
messaging connections, to read or write the defined virtual tags and a variety of class instances.
These two drivers will also implicitly produce virtual tags upon external request.

* The Target Driver permits multiple virtual I/O modules to appear in Ignition’s virtual chassis
using a shared configuration. It is otherwise a subset of the Host Driver and is configured with
similar XML. It does not support listening on the network, so must always be paired with at
least one Host Driver.

* Enhanced EtherNet/IP Host Driver with I/O scanner and message originator features. This is a
superset of the Host Driver above, permitting Ignition to directly connect to a wide variety of
networked I/O adapters. This enhanced driver can also consume virtual tags from external
devices.

1.1 New Features of v2.x
* The Generic Client Driver is entirely new.

* The vl.x driver’s “Base Features” have been renamed to the Generic Host Driver (Adapter) and
companion Target Driver. Like the Client Driver, these drivers support many more CIP data
types, along with more options for element alignment rules within CIP structured types. The
editors for tags and types have been altered to accommodate these new type features.

e The vl.x driver’s “Premium Features” have been renamed to the the Enhanced Host Driver
(Scanner). This driver no longer uses an encrypted feature code to control scanner functionality.
It is now all-inclusive, controlled by an option in the module license. There are no longer any
subnet quantity limits or limits on which Host Drivers can be scanners.

* Inv2.1+, the Client Driver supports Class/Instance/Attribute polling of targets, using data types
for common classes or from supplemental configuration. Other attributes will be treated as byte
arrays.

Page 5 of 67

https://www.odva.org/
https://www.omron.com/
http://ab.rockwellautomation.com/
https://inductiveautomation.com/scada-software/
https://inductiveautomation.com/

September 23, 2024 [UTORBGN
Ignition EtherNet/IP Module User Manual e
EtherNet/IP Communications Suite

1.2 Generic Client Driver Features

The generic Client Driver is a request/response messaging driver. It makes a TCP/IP connection as an
originator to a target device using the EtherNet/IP protocol, follows an optional CIP route path from the
first hop to the target device, probes that target device for available data, and exposes the result in
Ignition’s OPC Browser (or Quick Client). The possible browsed items include:

* Allen-Bradley ControlLogix and CompactLogix processor families’ tags and data types, both
controller-scope tags and program-scope tags, but excluding tags with no external access.

* MicroLogix 800 family’s global tags, excluding structured types, and excluding arrays where
any subscript range is not zero-based. (Limits imposed by the ML800 itself.)

* Omron NJ/NX processor family’s global tags and data types, except those set to “Do Not
Publish”.

This driver is intended to be drop-in compatible with OPC tags currently configured to use Ignition’s
native Logix v21+ driver, or Ignition’s native NJ/NX driver. Where “drop-in” means deleting the
original device, then creating an instance of this driver with the same name and communication settings.
(In some cases, a gateway restart may be required.) This driver offers more features than the IA driver,
which if used, preclude driver substitution in the other direction. Notable items:

* Optimized access to the data structures of Logix Add-On-Instructions, so long as none of the
AOTI’s members or nested members have external access set to “None”. Since that is the default
for local tags within AOIs, PLC edits are likely to be required to take advantage of this feature.

* Support for the expanded list of basic data types in recent Logix firmware. These are all data
types present in the CIP specification, and this module uses the CIP names for them.

* No need to manually configure a list of tags for an Omron NJ/NX, as is required by Ignition’s
native driver.

* Optimized access to Omron NJ/NX data structures, except where unions or user-specified
custom member offsets are used.

* Optimized access to Omron NJ/NX arrays, including where subscripts are not zero-based.

* Support for the expanded list of basic datatypes in the Omron NJ/NX family, including its
“Vendor Specific” BCD, date, time, and date/time data types.

* No need to configure Modbus addresses within MicroLogix 800 family processors, when using
compatible tag types.

* Support for one-dimensional numeric arrays in Ignition OPC tags, with lenient write length
handling (silent truncation or zero-filling).

* Support for string transforms of array data, allowing numeric arrays (8-bit or 16-bit) to be
interpreted as null-terminated strings (with null-filling when written).

* Support for datetime transforms to and from select numeric types.

* Produces Ignition UDT JSON corresponding to the target device’s user-defined types, in folders
by device name, for convenient import into tag providers. Each has a UDT parameter to drive
the OPC Item path of an instance, with proper chaining to nested types. A compact form that
leverages array tag types is also offered.

* Produces Ignition Tag JSON corresponding to the target device’s entire set of exposed tags, using
the UDT definitions for efficiency. This JSON should be pruned to the actually needed items
before use. A compact form that leverages array tag types is also offered.

Page 6 of 67

September 23, 2024 [UToMETION

Ignition EtherNet/IP Module User Manual 7
EtherNet/IP Communications Suite

1.3 Generic Host Driver Features (Adapter)

Th generic Host Driver is a passive farget, listening for connections and messages that originate in an
external device, typically a Logix™ PLC, Omron NJ/NX, or other PLC with EtherNet/IP Scanner
support. (Older Omron PLCs can be EtherNet/IP scanners via option modules.) Ignition appears to be
an I/O chassis, with instances of the driver showing up as one or more I/O modules. These virtual I/O
modules can also mimic a Logix PLC by responding to symbolic tag data read/write message requests
from other systems, including HMIs.

Ignition. /

Iy b Live sasem

Logix v21
OPC Driver

s

Ignition. /

oy b Lives s

oy
AUTORATION)

.

ﬂ ETHERMET - BRIDGE Igniticn_Virtual_Chassis
-HES CIP Bus
- ﬂ 0 CIF-BAQDULE VirtualMp dulelQ
fl 1 CIP-BMODULE VistuzlModuledl
-- ﬂ 2 CIP-MODULE VirtuziModuled2
f 3 CIP-BODULE VirtualModuled3
Bl 25 CIP-MODULE VirtualModulehi
[59 CIP-MODULE VirtualMadulesd

—» Request Traffic
~f}— Reply Traffic
~fl—P» Replies & I/O

Figure 1: Generic Host Driver Network Layout

The Generic Host Driver, diagrammed in Figure 1, provides the following features:
* Implements a virtual CIP chassis allowing up to one hundred (100) driver instances per Ignition
server, each in a specified slot. Although an IP address can only be attached to one driver
instance, backplane message routing makes all instances reachable from any listening IP address.

Page 7 of 67

September 23, 2024 AUTORAMION
Ignition EtherNet/IP Module User Manual
EtherNet/IP Communications Suite

PROFESSIONALS
uc,

Emulates Logix data types and data tables (tags) as described in the Logix Data Access manual,
accepting CIP data table read and data table write messages from Logix processors. Each driver
instance has its own collection of data types and tag names, just like separate Logix processors in
a single chassis. As a convenience, a real Logix processor’s project file, exported in L5X format,
may be imported to a driver instance to set up the same data types and tags, including initial
values for most types. While not specified, this emulation is expected to be compatible with
third party products’ Logix drivers, including various industrial HMIs, and is compatible with
Ignition’s own Logix v21 driver. Where any tag or datatype does not conform to the
requirements of Rockwell’s data access manual, that tag is omitted from the processor browse.

Implements user-configurable I/O targets (aka assemblies and connection points) that are
compatible with Allen-Bradley’s generic ETHERNET-MODULE and ETHERNET-BRIDGE
devices in a Logix controller’s I/O configuration. These assemblies may reference any other data
in the driver instance as scatter/gather member items. While only one Logix processor may own
an assembly as an output connection point in a driver instance, multiple processors may output to
different assemblies in the same driver instance, and may input from any configured assembly.

Exposes all tag data and most CIP object data in each driver instance to Ignition’s OPC/UA
server, with browsing support. Standard Logix tag names, subscripts, structure element names,
and bit numbers may be used in OPC item paths, with special syntax for CIP object classes,
instances, and attributes. Keywords are provided for accessing arrays of bytes as ASCIZ or UTF8
strings, and arrays of 16bit integers as UTF16 strings, along with support for standard Logix
STRING data. Keywords are also provided to convert certain types to/from OPC DateTime
values (timestamps).

Allows all appropriately-sized emulated tags to produce to any Logix controller configured to
consume them. No consumer or RPI limits are enforced, other than the performance of the
Ignition server. Data types and tag sizes don’t actually have to match—buffers will be silently
truncated or zero-padded for the originator.

Processes user-defined jython code for a variety of communication and data handling events,
including events for OPC subscriptions. Each virtual device has its own code. These code
modules are exposed via system.cip.* scripting functions for integration with gateway scripts,
both shared and per-project. Ad-hoc CIP messages can be constructed and sent to the virtual
modules and the replies retrieved, even from client/designer scope.

Provides an “I/O Momentary Button” with reliable turn-off in case of Vision client UI failure or
client-gateway communication disruption. It is designed to emulate physical Normally-Open or
Normally-Closed pushbuttons attached to a Remote I/O chassis. This component bypasses the
SQLTags infrastructure to set/unset the appropriate boolean in a virtual device’s tag data
structures.

Support for PLC-5 and SLC-500 messaging types is planned for a future release.

1.4

Enhanced Host Driver Features (Scanner)

The enhanced Host Driver, in addition to all of the generic features, adds originator functionality, that
is, it can actively initiate communications with external devices. This includes both request/reply
(scripted explicit messaging) and I/O type (scanner or tag consumer) connections.

Page 8 of 67

http://literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-pm020_-en-p.pdf

September 23, 2024 [UToMETION

Ignition EtherNet/IP Module User Manual uc
EtherNet/IP Communications Suite

——» Request Traffic
~a}— Reply Traffic
~}—P» Replies & /O

Igniﬁoﬁ‘./

oy ek Lo ssasans

-
AUTORATION

N

ﬂ ETHERMET- BRIDGE Ignitien_Virtual_Chassis
R CIP Bus
- n 0 CIP-BAQDULE VirtualModulelO
fl 1 CIP-MODULE VirtualMe dulell
- fl 2 CIP-BACDULE VirtualhModuled2
B 3 CIP-MODULE VirtualModuled?
Bl 25 CIP-MODULE VirtualMadulehi
- H 59 CIP-MODULE VirealMaduledd

Figure 2: Enhanced Host Driver Additional Network Features

The Enhanced Host Driver adds specific features, as diagrammed in Figure 2:

* I/O module scanning via any configured local IP address, including support for connection paths
through other EtherNet/IP bridges. (Local IP addresses must exist in the OS and be configured
in a Host Driver to be used with scanner mode.)

* Support for consuming tags from Logix or other controllers that are configured to produce them.
Data types do not need to match, but total tag size must match.

* An originator 32bit serial number for the driver, unique per slot, as required by the CIP
specification. The module identifies itself with Automation Professionals’ registered ODVA
vendor number, 1311.

* Arbitrary CIP messages can be sent to and replies received from any external CIP device
reachable from any configured local IP address.

Page 9 of 67

September 23, 2024 [UTORBGN
Ignition EtherNet/IP Module User Manual e
EtherNet/IP Communications Suite

1.5 PLC Feature Compatibility Matrix

Ignition Ignition Ignition
Client Adapter Scanner
Features Features Features
~ &)
§ S S o0 E
N L o £ =
et § § . N o o0 | & s
= [) = B | = =
E| 5| B) =iy 0
Flglalg|2|2 |8 & (2 |8
S|lZ2|8|a| &8 g E |8|¢E g
S5 Elglale |o [2 |B]|S =
El» BIEES [0 |8 [E2lo |B
N E|O|= |00 = | O 2| = A
Allen Bradley Logix <v20 X X 4000)5((1)80 X
. 500
Allen Bradley Logix >v21 X 4000 <100 X
Allen Bradley MicroLogix 8xx X X X ? 4000 X X X X
Allen Bradley MicroLogix 8xxE X X X (’? 4000)5(30 X X X
Omron NJ & NX1P2, Built-in 600 600
Port X X 1994 x32 ? x32 (?
Omron NJ with CJIW-EIP21 | X | X | X[X| @ | X)1(;‘2‘4 ® P)1(;134 ?
Omron NX102, per Built-in Port X X 1994 600 ® 600 ?
x32 ° x32 °
_— 1444 1444
Omron NX701, per Built-in Port X X 1994 56 ? <56 (’?
4000 |1444 1444
Reyencekv X XXX (500) |x256 ? 256 | ?
Automation Direct P1000-P3000 | X | X | XX | P | X [14%* XX [X(|13* | X
igl;lejileisEtherNeUIP /O X X X X Varies X X X Varies X

Page 10 of 67

September 23, 2024 [UTORBGN
Ignition EtherNet/IP Module User Manual e
EtherNet/IP Communications Suite

1.6 Firewall and Networking Requirements

1.6.1 Ports

The following Internet Protocol ports, reserved with IANA for the EtherNet/IP protocol, are required by
the various options of this driver, as follows:

Port Usage

44818/TCP EtherNet/IP unencrypted message encapsulation.

 Required outbound for all Generic Client driver
connections, and for Scanner connection
handshake. Also used outbound for fully
scripted messaging via the Scanner option.

« Required inbound for Adapter connection
handshake and for Logix controller MSG target
emulation.

44818/UDP EtherNet/IP browse peer discovery and resource
constrained messaging.
 Used inbound and outbound by the Adapter option
to expose Ignition to RSLinx. Optional.
2222/UDP EtherNet/IP I/0 data and producer/consumer data
transport.
* Required inbound and outbound for Adapter
option and Scanner option functionality.
2221/TCP EtherNet/IP TLS and DTLS message encapsulation and
2221/UDP encrypted I/0 traffic.
+ Not currently implemented in this driver.

For full functionality, ensure your gateway’s firewall allows traffic on these ports. In the inbound case,
ensure the firewall permits the traffic at least on the IP addresses used by any EtherNet/IP Host device
instance as Local Addresses.

1.6.2 Routes

EtherNet/IP messaging that travels over TCP/IP is generally compatible with all common routing
topologies, including common forms of Network Address Translation that disguise the client
application’s real IP address from the target device. This means that:

* When using the Generic Client driver, Ignition’s real address can be hidden (substituted) by
source NAT when communicating with PLC target devices, and PLC target devices’ real
addresses can be hidden (substituted) by destination NAT (aka pinholes) behind virtual TP
addresses.

* Similarly, when using the Logic controller MSG target emulation of the Adapter option of the
driver, NAT in the other direction (when PLC is the client) is fine.

EtherNet/IP 1/O traffic that is purely UDP Unicast cannot traverse any NAT. The handshaking to set up
such connections is performed over a separate, ephemeral TCP channel, and embeds the real [Pv4
addresses of each endpoint within the protocol content. Those real endpoints must be normally routable
for UDP traffic in both directions.

Page 11 of 67

September 23, 2024 [UTORBGN
Ignition EtherNet/IP Module User Manual e
EtherNet/IP Communications Suite

Furthermore, EtherNet/IP I/O that includes any multicast traffic (including producer/consumer tag
functionality) not only cannot traverse any NAT, but is almost always confined to a common subnet.
Many EtherNet/IP devices require multicast traffic in the target to originator direction (input data) as a
consequence of redundancy support and/or support for listen-only connection types. If your application
requires support for such traffic, Ignition must have an ethernet interface in the same layer 2 network,
with an assigned IP address within the same subnet, as the peer device.

Page 12 of 67

September 23, 2024 AUTOMETION

Ignition EtherNet/IP Module User Manual PROFESSIONALS
EtherNet/IP Communications Suite

2 Client Driver

2.1 Settings

The “Communications” settings section provide the basic
information needed to reach the target device’ and taﬂor Metuork A4AIESs o ame or expi P adress ofthe frthap on the nework Optional port umberfera ol
the use of concurrent buffered connections.

Route Path Second Hop and following hops. Typically “slot 0" for ControlLogix and older model CompactLogix. Empty for newer
! on-board ethernet port.

The “Route Path” setting configures the hops from the e
ethernet endpoint through any chassis or multiple chassis.

Buffered Message ¢, s
ize

P Foriard Open il betispls ot sar. M den deices wil eportproper vlue fncedec Use S00for
roc dule

It uses port segments, optional electronic key segments, : o iy ir e

and optional network segments. (But needing ekey or .

network segments would be very unusual.) The keywords =~ s mmm—mm—m—m—mw
are required. Leave entirely blank if the network port is on Figure 3: Client Driver Communications Settings

the front of the processor or intrinsically part of the device. (Use the first hop diagnostics in the OPC
browser to verify the routing.)

The “Buffered Message Size” setting is the starting point for the driver’s automatic adjustment routine.
Very old devices may not cooperate with automatic adjustment—for those, use 500 (250 if DH+ is in the
route path). The actual message size limit after adjustment is available as a diagnostic value. Once
known, it can be placed here to avoid the few milliseconds needed for automatic adjustment.

The “Concurrency” setting is the number of buffered connections to use within the TCP/IP connection.
At least one buffered connection will be used. These consume PLC resources even when idle, and can
take time for the PLC to recycle, so do not use more than your application needs. Also check your target
device’s specifications for “connection resources”.

There are a variety of advanced settings that are not detailed here. See the descriptions on each setting.

2.2 Configuration
After a driver instance is created with core settings, its

ilt-in CIP Class Definitions

Configuration page is used to access additional information = epen oo
and to provide supplemental CIP probe information and to
provide an EDS file, if applicable.

| Browse... | No file selected. Browse... | Nofile selected.

Import Supplement XML Import Manual EDS

If an XML supplement is imported, or a manual EDS file
imported, links will be provided to re-export those files. The supplemental XML can add to or partially
replace the information about CIP object classes, instances, and attributes that are built-in to the driver.

Where “id” values clash, the supplement replaces the built-in. Otherwise, the supplement is cumulative.

If probing obtains an EDS file from the device, it will be exportable, too. If either Logix browsing or
Omron browsing succeed, a gzipped raw probe file will be made available (for use by Automation
Professionals’ support), along with structured data type information and probed tag information in JSON
format. The JSON-formatted exports may be used to create corresponding UDTs within an Ignition tag
provider, and tags using those UDTs. Such UDTs can be used directly, or can serve as parent data types
for inheritance, or can be altered as the end-user sees fit. UDTs for data types and Add-on-Instructions
that have any members set to no external access should have those members pruned from the JSON
before use. Also, in the compact form of these JSON exports, numeric arrays are defined as array tags,
which may be more efficient, if a bit harder to use in many applications.

Some of the raw probe details are injected into the JSON UDT’s documentation properties. Open the
JSON in a syntax-highlighting text editor if you wish to review all such information in a convenient

Page 13 of 67

September 23, 2024 [UTORBGN
Ignition EtherNet/IP Module User Manual e
EtherNet/IP Communications Suite

form. Additional probe-related information is placed in the device’s home folder within the gateway file
system.

2.3 OPC Interface

The OPC Browser (and Gateway Quick Client) will show the user the tags discovered by probing under
the Controller:Global and possibly also Program:ProgramName folders, organized hierarchically as
one would find within a PLC’s programming software. Within those folders, OPC item paths are strings
conforming to “tagpath” syntax, as described here. Precise syntax allowed varies by target device—see
the application notes by brand in the following section.

Information about the device connection and related meta-data is provided in the [Diagnostics] folder
as usual, with some nodes that are specific to this driver.

Other folders may or may not be present, depending on the probe results, and OPC item paths within
those folders may be more complicated Application Path strings, as described here.

When the target is a Keyence KV PLC, its linear address ranges will be shown under the top-level
Keyence Device Memory folder. These address ranges are broken into many virtual subfolders to
minimize the scrolling necessary to find any particular item.

Especially note the features invoked by special symbols in application paths, described in Special
Symbol Segments.

3 Client Driver Application Notes

When the client driver starts up, before starting the network connection, it extracts the information from
the last successful Logix and/or Omron raw probe files, and any previously extracted EDS file. If the
target device is unchanged, this enables faster startup of existing subscription items, as they won’t have
to wait for the connection probe to complete.

The driver performs a complete probe after the connection succeeds, and again after any connection
breakage/reconnection events. While connected, this driver will check Logix or Omron metadata once
per minute to determine if a reprobe is required. If required, any reprobe will be conducted in parallel
with other OPC services.

3.1 Allen-Bradley ControlLogix & CompactLogix

These processors have publicly documented CIP services to browse the available tags, browse the
referenced structure types, read meta-data about the program version, and perform read and write
operations upon discovered tags. Browsing includes program tags.

The public documentation notes that, starting with firmware version 18, tags and structure members may
have external access controls applied. While there is partially documented metadata that indicates that
specific tags are read-only (and tags with no external access are simply not listed in a browse), there is
no corresponding metadata that indicates what a structure member’s access rules happen to be. That
information can only be obtained by actually reading or writing the member or its containing structure.
While operating, this driver will annotate its internal probe information with any permissions failures it
encounters on complete structures, so that later requests will go directly to the structure members
instead. Note that this fallback operation greatly limits optimization of the tag in question. Structure
members that are not readable at all will be individually attempted on every cycle, so should always be
pruned from Ignition’s tag list.

In order for this driver to optimize reads of structure contents (by reading entire structures at once), all
of the user-defined types’ members must have at least “read only” external access. This driver will
attempt to read complete structures any time #wo of the structure’s members are included in the same

Page 14 of 67

https://literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-pm020_-en-p.pdf

September 23, 2024 [UTORBGN
Ignition EtherNet/IP Module User Manual e
EtherNet/IP Communications Suite

subscription pace, or in the same multiple-item OPC read. This means that you should always use the
same subscription pace for members of the same structure, unless there’s a no-access structure member
that prevents optimization.

In order for this driver to optimize writes to complete structures, all of the user-defined types’ members
must have “read/write” external access, and all of the data for all of its members must be submitted in a
single multi-item OPC write operation. (Where named booleans are hosted by another member, which
is often hidden, only the named booleans must be written. Remaining bits will be zeroed, and are
expected to be ignored in the PLC.) When writes to structures cannot be optimized, individual member
writes will occur.

An alternate optimization occurs when working with individual bits of a single integral type instance,
including named booleans sharing a single host member of a structure: multiple bit reads will be
combined into a read of the enclosing integral type, and the bits extracted in the driver. Similarly,
multiple bit writes will be combined into a masked read-modify-write service altering all of the given
bits in one operation.

The easiest way to correct the external access problem is to bulk replace the definitions via a Studio5000
export/import operation:

* Export your Studio5000 project in L5X format, making sure the “Encode Protected Content”
checkbox in the lower left is not checked. (You may need to adjust your options if that
checkbox is checked and greyed-out.)

* Open the exported project in a text editor, and position the cursor on the line containing
</AddOnInstructionDefinitions> (verbatim). This will be right before the first section of
<Tags>.

* Select all of the text from there to the beginning of the file (Ctrl-Shift-Home in many editors).

* While that region is selected, open the editor’s Search & Replace tool, and set it to “plain text”
and “limit to selection”. (Terminology varies.)

* Replace all cases of ExternalAccess="None" with ExternalAccess="Read Only" in the
region. Save the file and exit.

* Open the modified L5X in Studio5000, which will prompt you to create a new ACD file.
Download this updated file to your PLC.

3.1.1 Predefined Data Types

The public documentation instructs 3™ parties to avoid accessing complete structures of these datatypes.
In many cases, this is required as a consequence of external access limitations on members of these
types. This driver will optimize where it can. Since these types are predefined, there is no work-around
possible.

If a predefined type has any unreadable member (many do have hidden members, especially the ones for
motion and for function block instructions), including instances inside of other data types “poisons” the
outer data type, making it also not readable as a whole.

3.1.2 /O Module Data Types

The public documentation instructs 3™ parties to avoid accessing complete structures of these datatypes.
Like predefined types, external access limitations can prevent optimization. More importantly, [/O
modules can use structures that don’t obey the normal Logix data alignment rules, and can include bit
fields as fragments of integral types. This driver will optimize where it can. Since these types are I/O
module defined, there is no work-around possible.

Page 15 of 67

September 23, 2024 [UTORBGN
Ignition EtherNet/IP Module User Manual e
EtherNet/IP Communications Suite

Like the processor’s pre-defined types, I/O module types often have unreadable members. Do not
include such types inside of other user-defined types.

3.1.3 Add-on Instructions

Again, the public documentation instructs 3™ parties to avoid accessing complete structures of these
datatypes. Certain members of AOI types are hidden or, in older firmware, simply implied. The
observed behavior is not too complicated, so this driver will optimize where it can. Access control is a
potential problem. However, since these types are usually user-defined, there are work-arounds
available.

Note that no external access is the default for local tags within AOI definitions. These must be changed
in Logix 5000 or Studio 5000 to at least “read only” external access. Be aware that the external access
column is hidden by default on the local tags definition tab within Rockwell’s programming software.
The column must be manually added to the display before one can fix the external access setting of these
tags. An AOI definition’s enableIn and enableOut boolean tags are also locked to “read only” external
access, so this driver can never optimize writes to complete AOI structure tags.

If you’ve purchased a processor with AOIs built into its firmware, and the AOIs have any non-readable
members, you will not be able to make the changes needed to enable optimized read access.

If you’ve obtained an AOI from a third party, and it is sealed, it will still be OK for optimization if the
third party prepared it with all parameters and local tags set to at least Read Only. Contact that third
party and request an updated AOI if you encounter a problem.

As mentioned above, including any pre-defined or I/O module-defined data type that has non-readable
members in an Add-on Instruction will “poison” the AOI’s data type, preventing optimization. In
particular, AOIs should not include any function block diagram routines, as many of their instructions
have this problem. As a work-around, define any such troublesome items as In/Out parameters, which
do not impact the rest of the AOI’s data type definition.

3.1.4 Structure Alignment Rules

{ Also see the in-depth review in Structure Definition Segments. }

Prior to firmware version 27, all Logix user-defined and add-on defined data structures used 32-bit
member alignment for everything, except for single primitive values of smaller data types. This means
all structures are padded to multiples of 32 bits, all nested arrays and structures are aligned to 32-bit
boundaries, and 64-bit data types are also aligned to 32-bit boundaries.

Beginning with firmware version 27, user-defined and add-on defined data structures that contain any
64-bit primitive values, directly or in nested structures, use 64-bit alignment instead. The 64-bit
alignment applies to everything, except for single primitive values of smaller data types, but does not
affect the internal alignment or size of nested 32-bit structures.

This driver does not attempt to determine the alignment used in a Logix data type, and does not use the
target device’s firmware version, but simply uses extra padding members where necessary to achieve the
overall structure size and individual member offsets reported in the browse process. Including extra
members in a structure is part of the algorithm to support AOIs in older firmware, so that functionality is
repurposed for this case. But care must be taken if the resulting structure is exported for use in the Host
Driver (via the XML placed into the device’s home folder).

3.2 Allen-Bradley MicroLogix 800 family

These processors have public documentation for messaging applications, which covers much of the
requirements for this driver. While only indicated obliquely in this documentation, these processors

Page 16 of 67

https://literature.rockwellautomation.com/idc/groups/literature/documents/qs/2080-qs002_-en-e.pdf

September 23, 2024 AUTORATION
Ignition EtherNet/IP Module User Manual o i
EtherNet/IP Communications Suite
partially implement the services described in the Logix Data Access manual for ControlLogix and
CompactLogix processors. The processor family has sophisticated data structure support, and support
for arrays where subscripts are not zero-based. However, they do not report structure information, and
there is no way in the Logix Data Access browse process to expose the array subscript ranges. To use
this driver to directly access ML800 family tags, without having to set up Modbus mappings, you must:

* Use primitive data types—no structures.

* Use MLS80O native strings, no ControlLogix/CompactLogix style string structures. (ML800
native string are actually CIP Short STRING instances with a defined maximum length.)

* Use zero-based arrays.
Any tags that do not follow these rules will simply not be reported by the PLC during the driver’s probe.

These processors do not support the CIP Specification’s Message Router Multiple Request Service, that
permitting batching of many requests within a large request buffer. The driver will automatically detect
this lack of support, but that short delay can be preempted with an advanced driver setting.

3.3 Omron NJ/NX family

These processors have public documention for their data types and related information for use in
messaging applications, but do not document their browse process for tag and structure information.

The browse process has been reversed engineered in considerable detail, including identifying arrays
with non-zero-based dimensions, multi-dimensional array tags and structure members, all documented
primitive data types, and the layout of structures of type NJ and type CJ. Unfortunately, the browsed
information for structures does not explicitly identify which layout is used. It must be inferred.

3.3.1 Structure Alignment Rules

{ Also see the in-depth discussion in Structure Definition Segments. }

Structures defined with the preferred “NJ” rule have variable alignment, based on the alignment
requirements of their members. The linked documentation, in §A-5-1, specifies the alignment
requirements of all of the PLC’s native data types. Structures of type “NJ” align each member according
to its own requirement, pad the structure size to match the largest alignment requirement among its
members, and use that largest alignment value as the structure’s own alignment if nested in another type.
Booleans are not packed together in “NJ” data types.

Structures defined with the legacy “CJ” rule have fixed 16-bit alignment for all members, even
individual bytes, and strings (which otherwise would use alignment=1). But consecutive boolean
members are packed together into one or more (nameless) 16-bit WORDs. Data types, including non-CJ
structures, are forced to align to 16-bit boundaries instead of their normal alignment.

After probing an NJ/NX processor, the algorithm lays out the members using the NJ rule, and if the
resulting length is correct, it uses it. Otherwise, it lays out the members using the CJ rule, and if the
resulting length is correct, it uses it. Finally, if neither length matches, a warning is logged. In this case,
the NJ layout is used, but marked to not be optimized. This causes every member to be individually
accessed, avoiding the layout error.

3.3.2 Structures with User-defined Member Offsets

Omron’s Sysmac Studio permits the creation of data types where each member is given an explicit byte
offset, or for booleans, an explicit byte and bit offset. Sysmac Studio does not permit members to
overlap, and appears to pad the entire structure to a 16-bit boundary.

Page 17 of 67

https://assets.omron.eu/downloads/manual/en/w506_nx_nj-series_cpu_unit_built-in_ethernet_ip_port_users_manual_en.pdf

September 23, 2024 [UTORBGN
Ignition EtherNet/IP Module User Manual e
EtherNet/IP Communications Suite

It is possible (easy, even) to define a structure with user offsets that produces a length match to one of
the normal rules, but with a different actual layout. This cannot be detected by the driver, and should be
validated manually for any application that has user-defined offsets in any data types.

Whether a warning is generated or not, a custom data type should be prepared that actually matches the
true layout, and supplied to the driver in the Supplemental XML file, with an exact name match. When
the probe algorithm acquires all of the raw member information from the PLC, before laying them out, it
will attempt to substitute the supplied layout. The supplied structure’s length must match, and every
member named in the PLC must be present in the substitute.

3.3.3 Omron Strings

Strings in these Omron processors are stored as a simple null-terminated byte array, where the byte array
is pre-allocated as a fixed size. The browse procedure does supply this fixed size information. As noted
in the public documentation §A-5-1, these are 8-bit aligned. However, this conflicts with the special
handling rules for arrays of strings described in §8-7-4.

Based on reverse engineering results, strings and arrays of strings embedded in structures are actually
8-bit aligned, and can be read or written in bulk when the entire structure is read or written, and are not
byte-swapped in that case. In addition to that discrepancy, attempts to perform multi-element array
reads as described in §8-7-4 produced error responses from the PLC, and repeated attempts broke the
entire connection.

As a consequence, any optimization result that would result in a multi-element string array access, is
preemptively replaced with multiple individual reads. If optimized string array reads are needed, make
the array part of a structure, include at least one other member of the structure in the PLC, and include
that extra element in your subscription or bulk read operation.

3.3.4 Omron Booleans

The NJ/NX family of processors default to storage of booleans in 16-bit words, when used as individual
tags, and when used as individual members of the default “NJ” structure format. When placed in “CJ”
format structures, consecutive named booleans will be packed into the 16-bit words instead of taking
one whole word each.

When arrays of booleans are created, in either case, the individual booleans are packed into as many 16-
bit words as needed, with multiple dimensions packed closely together.

When booleans are accessed on the wire, as booleans, individual booleans are transferred in a 16-bit
word. Arrays of booleans are transferred using one byte per boolean (Not Documented!). This is true
whether the booleans or boolean arrays are individual tags or members of structures.

However, when an entire structure is accessed, any booleans within are transferred in the packed format,
if applicable, that the processor uses internally. Because of this, booleans in these processors should
always be placed in structures, preferably CJ-formatted structures, along with at least one non-boolean
member. The non-boolean member should be read/subscribed with the booleans to trigger optimization
at the structure level.

3.4 CIP Attribute Access

All EtherNet/IP devices are required to support a variety of addressable attributes, like Identity
information, and usually support additional functionality, like TCP/IP configuration attributes and
information about uploadable EDS files. The most commonly used classes from the specification have
data types predefined in this driver for their attributes. Additional data type definitions may be added by
the user for application-specific uses (like structured assembly data).

Page 18 of 67

September 23, 2024 [UTORBGN
Ignition EtherNet/IP Module User Manual e
EtherNet/IP Communications Suite

3.4.1 Simple Attributes

The majority of attributes defined in the CIP Specification are single instances of an elementary data
type. The application path to use in the OPC Item Path is simply the class, instance, and attribute ID
information, possibly with macro shortcuts. Something like this:

cls C inst I attr A

Substitute actual integers in place of the C, I, and A placeholders. The value will be read using the
standard CIP service code 14 “Get Attribute Single” and written with service code 16 “Set Attribute
Single”. The values on the wire will be converted to and from OPC standard data types as long as the
attribute is listed in the built-in CIP types, or is defined using the supplemental XML file. If not defined,
the attribute will be read as a byte array, and a byte array must be supplied when writing.

Certain attributes in the specification use the STRINGI data type. While listed with the elementary data
types, it is composed, potentially, of several language-dependent strings, and needs to have a three-letter
language code supplied to access its content.

3.4.2 Complex Attributes

The CIP Specification does define some attributes as structures, arrays, or arrays of structures. They
must still be read or written in single requests, but this driver can extract specific elements or assemble a
write from a batch of simple values. Use additional selectors after the attribute code to drill down to an
elementary datatype. Use parenthesis around the tokens if the following selectors are in tagpath format.
Something like this:

(cls 55 inst 0 attr 32)[0].Name.eng

That class attribute of the File object happens to be the directory, and is a variable-length array of
structures, each containing an instance number and two STRINGI values. That complete application
path selects the english language form of the first structure’s Name member.

When multiple items in a batch read or subscription select values from a single attribute, they will be
optimized into a single read request. Writes to such complex attributes must supply all elements in a
single batch, as the entire attribute must be written in a single request.

The driver support for complex attributes depends on the built-in definitions from the CIP Specification,
and any user-defined types and attribute definitions in the supplemental XML file. Complex attributes
that have a variable-length array in their definition cannot be written in complex form. Use a byte array
of the encoded content to write such attributes.

3.4.3 OPC Browsing of Attributes

Some classes’ instance zero attributes will be exposed during the driver’s initial device probe after
connection, and will be immediately browsable. Otherwise, nodes for attributes will be created on first
OPC request, and will become browsable thereafter. This means that most OPC Item Paths for these
attributes must be manually entered in an OPC tag, or dynamically generated in an Ignition UDT, or
requested with a system.opc. read*() script call. The support for browsability is intended to simplify
troubleshooting with the OPC Quick Client, not for dragging and dropping to create Ignition tags.

3.4.4 Polling I/0O Assemblies

Note that assemblies in devices can be polled/written with this method. Out of the box, you will get
byte arrays on read and must use byte arrays to write. But you can use the supplemental XML
configuration file to define the actual structures involved, and assign those structure types to the
assembly instance’s data attribute. (Which is always attribute #3.)

Page 19 of 67

September 23, 2024 [UTORBGN
Ignition EtherNet/IP Module User Manual e
EtherNet/IP Communications Suite

Imagine an EtherNet/IP analog input module that reports its status in assembly #101, with some status
bits for channel underrange, overrange, and an overall module OK bit, followed by 16-bit integers for
the raw sample data. You could supply a supplemental XML like this:

<?xml version="1.0" encoding="utf-8" 7>
<cip>
<struct name="Input Buffer">
Status1=INT
Cho_Under=HostedBy Statusl.0
Chl Under=HostedBy Statusl.l
Ch2_Under=HostedBy Statusl.2
Ch3_Under=HostedBy Statusl.3
Ch4_Under=HostedBy Statusl.4
Ch5 _Under=HostedBy Statusl.5
Ch6_Under=HostedBy Statusl.6
Ch7_Under=HostedBy Statusl.7
Module OK=HostedBy Statusl.l
Status2=INT
ChO Over=HostedBy Status2.
Chl Over=HostedBy Status2.
Ch2_Over=HostedBy Status2.
Ch3 Over=HostedBy Status2.
Ch4 Over=HostedBy Status2.
Ch5 Over=HostedBy Status2.
Ch6_Over=HostedBy Status2.
Ch7 Over=HostedBy Status2.
ChO=INT
Ch1=INT
Ch2=INT
Ch3=INT
Ch4=INT
Ch5=INT
Ch6=INT
Ch7=INT
</struct>
<class id="4" name="Assembly">
<instance id="101" name="Some Analog Inputs">
<attribute id="3" name="Data" type="Input Buffer"/>
</instance>
</class>
</cip>

NouplshWwWwNRFRO

Then you could access all of these elements by name, using the macro for assemblies:

(assy 101 attr 3)Ch0 Under

(assy 101 attr 3)ChO Over

(assy 101 attr 3)Cho
As long as these OPC items are subscribed at the same rate, a single request on the wire will satisfy
them all.

3.5 Keyence KV family

Keyence PLCs that support EtherNet/IP via their built-in ports, or via either the KV-EP21V or KV-
NCI1EP communication add-on module, are recognized during the driver startup probe, and the PLC
model code is read to determine the presence and max sizes of the supported device memory areas. For
the KV-8000 and KV-8000A models, the function version is also read from Control Memory #900 to
determine the correct range for “R” relays.

Page 20 of 67

September 23, 2024 [UTORBGN
Ignition EtherNet/IP Module User Manual e
EtherNet/IP Communications Suite

3.5.1 OPC Browsing

The possible addressable items are exposed in the folder “Keyence Device Memory”, organized by
address type. Virtual folders are presented in a hierarchy to limit the amount of scrolling required to
browse to specific addresses when thousands of addresses are present. See Keyence Application Paths
for the manual addresssing syntax. The user is responsible for limiting themselves to the configured
global address range in the target PL.C, for each address type. (Most address types’ ranges are split
between global and local variables.) Access to addresses in the local ranges will be rejected by the PLC.

3.5.2 Communication Buffer Optimization

These PLCs allow 4000-byte communication buffers, but cannot actually use 4000 bytes in any
messages. To minimize resource usage in the PLC, set the buffer size to 500 bytes. (The largest
possible message is ~460 bytes.)

3.5.3 Request Optimization

These PLCs do not allow multiple small requests to be consolidated into a larger request using the
EtherNet/IP standard “Multiple Request” service code. Therefore, the only optimization possible in this
driver is to read consecutive addresses wherever possible. Gap spanning is always used to request
message quantities, except for Control Memories and Control Relays, as those are the only address types
that forbid access to undefined locations. This means that overall driver performance will be greatest if
PLC memory is allocated for tags in consecutive addresses.

Page 21 of 67

September 23, 2024 AUTOMETION
Ignition EtherNet/IP Module User Manual e
EtherNet/IP Communications Suite

4 Host Driver

4.1 Settings
Each driver instance functions as a virtual I/O module ="]

and virtual Logix processor in one of the 100 allowed T [T R
slots on the virtual backplane. Like all Ignition devices,
there is a “General” settings section for Name and e S SO ——

function or pass through this device via other devices. Separate multiple roles with commas.

Description, and whether the device is enabled or not.

The “Security” settings section offers the option to e e L T p—————
restrict some functionality based upon authenticated o

roles. When no roles are listed, no restrictions are
applied.

The “Communications” settings section defines the

behaVIOI‘ Of the Port Manager ShOWIl ln Flgul‘e 21 ln the Szl \‘/ilurtual(hass\ssmtNumber_uniquew\(hin this server. Zero to 99, This backplane slot s reached via CIP Port
Host and Target Drivers’ Functional Description section. [
At a minimum’ yOu must Supply a unique SlOt number. AT DNS Names or explicit IP addresses for local interfaces. The first IP address becomes CIP Port #2, then CIP

Port#3, etc. Separate addresses with commas and/or whitespace. Each will be a passive listener unless
scanner mode s enabled by a feature code,

Figure 4: Host Driver Security Settings

4.1.1 Local Listening IP Addresses

In a Host Device, the “Local Addresses” setting is B e et oo P GO gt
responsible for creating the “EtherNet/IP Port #2” and Figure 5: Host Driver Communications Settings

above shown in the Port Manager of Figure 21. The IP addresses supplied here must be local IP
addresses of the server. These are NOT the addresses of external devices. Only one driver instance can
claim any specific IP address. Use backplane slot addressing to reach other driver instances via the slot
that has the IP address assigned.

DNS host names may be used instead of IP addresses in this setting, but they must resolve to the real IP
addresses of the gateway when the device is started.

Note: only IPv4 addresses are supported, due to limitations in the EtherNet/IP specification itself.
4.1.2 Backup Listening IP Addresses

In a redundant pair of Ignition Gateways, the listening addresses must be different. The master gateway
will use the addresses above, in the Local Addresses field. The backup gateway will use the addresses in
this setting, which must have the same number of entries as Local Addresses. Ignored if not a redundant
setup.

If DNS host names are used above, and they resolve to the backup server’s real IP addresses when the
backup server looks them up, this setting can be blank.

Page 22 of 67

September 23, 2024 [UTORBGN
Ignition EtherNet/IP Module User Manual e
EtherNet/IP Communications Suite

4.2 Configuration

After a driver instance is created with core settings, its
Configuration page is used to set up the rest. The

Ethernet/IP Host Device EIP-Porthos81z

Identity Backplane Slot #0 Serial # 0x000003ea

Port 1 "Backplane”

balance of the configuration contains the data types and P T o e

virtual tags the Logix emulation offers, the assembly

connection points and their scatter/gather definitions, SRS

and, for the Enhanced Host Driver, the I/O modules to (Browse..] ot st

scan. In contains all of the data values the module rguson
should start with. It is maintained internally as XML. S
When disabled, only the summary data and the XML B e

import/export section are available on the configuration = Figure 6: Host Device Configuration Import/Export

page, as shown in Figure 6. The summary data displays the Port Manager details that are in effect from
the settings and from the module license, if any. (A default serial number is used when no license is
present.)

4.2.1 Default Configuration

When either a Host or Target device is first created, it is g =
populated with sample data types, tags, and assemblies that fs CPMODULE Boreio 0P Mookl

allow each to immediately communicate with an external . Comecton Paamas

PLC’s I/O scanner as a generic device. The corresponding N - W s
module settings for an Allen-Bradley Logix processor are . ‘Dptp‘. w o Sz:i

Comm Format: | Dats - DINT

shown in Figure 7.

The first 8 bytes of output data are echoed back to the PLC’s
input data without change. The balance of the input data

Configuration: 103 20 = [Ehi

block is populated with counters and bit patterns derived from | se o sont | [_he
them. See the Jython code included in the sample Figure 7: Sample Configuration Connection

configuration for details on the generated data.

The sample configuration for a Host Device also contains a scanner module suitable for use with another
server’s sample device, as an example of Active I/O Scanning. Adjust its target IP address and enable it
if you wish to experiment.

4.2.2 Configuration XML Format

The XML format described above is based on a simplified form of the Logix L5X file format, with
additional sections for non-Logix features. The “Import XML” operation accepts both the condensed
format or an existing Logix Processor’s .L5X files (without encoded Add-On-Instructions). The import
process will identify data types, controller tags, and I/O modules, and reduce the XML to just the
supported functionality.

Unfortunately, the L5X file format does not include all necessary details about its /O modules. After
importing from an L5X, the EDS files for the I/O devices will be needed to create working 1/O slaves.
See the section on Interpreting EDS Files below.

The Import XML operation completely replaces the previous configuration. If a merged configuration is
needed, cut-and-paste the necessary XML pieces together. The condensed XML format is organized to
be much more readable than an L5X, to help with cutting and pasting.

Page 23 of 67

September 23, 2024 AUTORATION
Ignition EtherNet/IP Module User Manual 7
EtherNet/IP Communications Suite
4.2.3 Runtime Configuration
When a “Host Device” instance is enabled in the settings page, additional configuration page sections
are displayed. All of these additional sections display and offer editing of the running driver instance.
Changes take immediate effect in the server, but are not saved in the startup configuration. When all of
the configuration items are working as desired, and data values suit, use the “Save Running XML”
button to create an XML snapshot and place it in the internal database. This is equivalent to using the
“Export Running XML link to save to a file, then importing that file.

4.2.4 Data Type Emulation

The first runtime configuration section lists all user-defined and I/O defined data types used throughout
the rest of the configuration. System-defined datatypes corresponding to a LogixV20 processor are
preloaded into the emulation and are not displayed. See the “Lgx Type Manager” class object’s instance
list in the OPC browser or Quick Client for more details on the pre-defined types.

While a Logix processor keeps track of the difference between User-defined data types, types from Add-
On Instructions, and Module-defined data types, they are exposed to the world in one big list of
definitions, so this emulation treats them the same. When parsing an L5X that has I/O or AOI data
types, they are added to the user-defined list within the emulation, and become fully editable. (Note: an
L5X file does not always contain complete information about I/O data types—manually check for
alignment and bit placement.)

The data type editor within the gateway configuration editor uses the syntax described for members of
anonymous structures described in §8.4.4 below. However, for your convenience when working from
Logix L5K files, accepts that same syntax for member fields, as long as you prune the member
description, visibility, and access control information. Therefore, each line defining a member may have
one of these forms:

1) membername=definition
2) datatype membername
3) datatype membername [dimension |
4) BIT membername hostmembername : bitnumber
Form #1 accepts the full range of definition options described in §8.4.4.

The data type in forms #2 or #3 must be one of the elementary types, a predefined structure type, or a
different datatype that doesn’t depend on the current type (no circular references).

The hostmembername in form #4 must be an intrinsic type elsewhere in the same member list, and the
bit number must fit within it.

Alignment is specified by drop-down selection, and would typically be “32bit DWord (Logix)”. The
system will preserve the case of member and datatype names but is not otherwise case-sensitive. These
names must follow Logix rules for identifiers, basically allowing just alphanumerics, underscores, and
colons. To avoid possible compatibility problems, only use colons in I/O type names. Consider
replacing colons with underscores to improve scripting support.

Use “64bit LWord (Logix)” alignment if Logix Firmware v27+ compatibility is needed, and any member
of the structure is a 64-bit type, or has a nested 64-bit type.

4.2.5 Tag Emulation

The second runtime configuration section lists all virtual controller tags and their data types. Tags have
a name, a data type, and optional dimensions. No limit is placed on the dimensions, other than general

Page 24 of 67

September 23, 2024 [UTORBGN
Ignition EtherNet/IP Module User Manual e
EtherNet/IP Communications Suite

Java memory consumption. If a tag’s array dimensions are changed, or a structure data type is changed
while being used by a tag, the tag will be reconstructed and an attempt will be made to retain its content.

Like Type Names, Tag names must follow Logix rules for identifiers, basically allowing just
alphanumerics, underscores, and colons. To avoid possible compatibility problems, only use colons in
I/O tag names. Tags receive special treatment in a Logix Processor’s Message Router, where the tag
may be specified by name in an ANSI Symbol segment instead of by class and instance. The driver
fully implements the corresponding CIP services, and tags are listed by name in the OPC browser in the
root of the driver instance (along with the CIP Object Classes).

If the license permits I/O scanning, tag consumption from Logix controllers is also allowed. Specify the
route path to the controller through the appropriate outbound port, name the tag to consume, and specify
the packet pace desired. These fields are ignored if scanner functionality is not available.

4.2.6 CIP Assembly Emulation

The next runtime configuration section lists the assembly connections points defined for passive I/O
targets, with a summary of the data it refers to.

Support for the generic Logix ETHERNET-MODULE and CIP-MODULE within the generic Logix

ETHERNET -BRIDGE chassis type require the use of these assembly numbers, also known as connection
points. Within this driver, an assembly must point to one or more tags or elements of tags. The
assembly itself stores no generic data. The data in the driver instance does not have to match the data
type chosen in the Logix module definition. The assembly emulation doesn’t dictate any restrictions on
the RPI used by the Logix Controller, although garbage collection within Java may interfere with very
fast packet rates.

While intended to emulate the generic Logix Ethernet I/O modules, the driver instance can define any
assembly connection point needed to emulate other I/O modules, too. These assemblies can also be
targets of other Ignition Servers running this module with Scanner features enabled. Support for
standard CIP Parameter objects and Parameter Groups is planned for a future release.

Assemblies distribute multiple data values from a single receive buffer and combine multiple data values
into a single send buffer. These operations are typically called scatter and gather, respectively. The CIP
standard for assemblies specifies scatter/gather operations down to individual bits. Assemblies have a
name (for convenience only), a connection point number, and a list of members. Although connection
point numbers in the CIP specification can be 32-bit numbers, Logix processors can only use 8-bit and
16-bit connection points.

Each member specifies a number of bits and a data object’s application path. The number of bits used
does not have to match the encoded size of the data object. The data object must support the read or
write operations the assembly will be used with. The driver does have one specific limitation: members
must either be byte aligned, or the necessary bit shifting operations must fit within a 32-bit temporary
register. The simplest assemblies have a single tag in their member list, deferring all packing and
alignment to the data type of the tag.

As of version 1.4.x, an Assembly’s member list can include padding members of a specified number of
bits. Simply include the bit width of the padding member on a line by itself when editing.

Also, as of version 1.4.x, Assembly member items’ application paths may begin with a single “slot n” to
reference an application path in a different driver instance. If the rest of the path is in tagpath format,
remember to use parentheses around the slot tokens.

Assemblies may include structure tags that use any desired alignment rule, simplifying some cross-brand
connections.

Page 25 of 67

September 23, 2024 [UTORBGN
Ignition EtherNet/IP Module User Manual e
EtherNet/IP Communications Suite

4.2.7 1/0 Module Scanning

The final runtime configuration section lists the I/O modules defined in the I/O Scanning Manager. This
section needs a feature code to function beyond trial mode. Each I/O module definition supplies the
following information:

* Name and Identification of the target for Electronic Keying, optionally including a catalog
number for reference.

* Connection detail, including the route path to the target device, whether the connection is
inhibited or enabled, and the mode and pace information in each direction.

* Data detail, including the application path within the target device, and the corresponding data
objects in this driver instance. If there is a static data item in the application path, and dynamic
config data specified with a config tag, the two are concatenated before use.

The route path starts with a port number/address segment for the outgoing EtherNet/IP port and the first
hop IP address. Importing an L5X will typically get all but the beginning of this field correct. Simply
replace “slot n port 2 ipaddress” with “port m ipaddress”, where “m” is the correct outgoing port number
(typically 2°).

After importing an L5X with Logix generic I/O devices, the rest of the imported parameters for them are
likely to be correct. For other I/O devices in an L5X, at least the application path will have to be
constructed with the help of an EDS file or a Wireshark packet capture. Since EtherNet/IP I/O devices
are not required to follow Logix UDT alignment rules, any imported I/O data types may need to be
adjusted or split into multiple tags.

Use an assembly as an intermediate buffer to perform scatter/gather with unaligned/misaligned data
types. As of version 1.4.x, assemblies used by the scanner can include bit padding and can scatter
to/gather from nested UDT elements.

5 Target Driver

The Target Driver is an abbreviated instance of the Host Driver, omitting all Scanner functionality and
live editing features, but allowing a single configuration to occupy multiple slots in the virtual chassis.

5.1 Settings

This is similar to the Host Driver, but without any configuration options for Local Addresses or Backup
Addresses. Where the Host Driver has a field for its Bus Slot Number, the Target Driver instead has a
field for a comma-separated list of slot numbers and/or hyphenated slot ranges.

5.2 Configuration

The Target Driver uses the same XML configuration format at the Host Driver, but ignores any scanner
module definitions. It offers import, export, and live export functionality on its configuration page.
OPC Item Paths for configured virtual tags are the same as for the Host Driver, but with a slot segment
prefix. An XML file created and edited in a “Host Device” can be loaded in a “Target Device”
(unsupported features will be ignored).

In addition to the tags specified in the configuration, the driver pre-defines two read-only tags:
* slot is an integer corresponding to the actual occupied slot in the virtual chassis, and
* relslot is as above, but relative to the first configured slot for the target device.

These tags may be used as dynamic subscripts in OPC Item Paths and in Assembly Member definition’s
Target attributes. See the example in §6.1.2 for how this can be used to consolidate assembly data from
many virtual adapters into arrays in a host driver.

Page 26 of 67

September 23, 2024 [UTORBGN
Ignition EtherNet/IP Module User Manual e
EtherNet/IP Communications Suite

Note that the live export option only provides the live data from the first slot given in the settings.
Similarly, the “Save Running XML” button will save the live data from just the first specified slot to be
the startup data for all slots. If unique startup data is needed for each slot, use the jython code block to
perform the customization (conditioned on the built-in _slot or relslot tag).

Page 27 of 67

September 23, 2024 [UTORBGN
Ignition EtherNet/IP Module User Manual e
EtherNet/IP Communications Suite

6 Host and Target Driver Application Notes
6.1 Using Passive Target I/O

Allowing an external Logix controller, Omron controller, or other controller with EtherNet/IP scanner
support, to initiate the I/O data traffic offers a number of benefits to the architecture of a control system:

» User interface objects that replace physical control panel buttons, lights, and similar components,
can reliably operate using the same logic as those physical devices, and with similar user
interface latencies. From the scanning controller’s perspective, they are indistinguishable from
real devices. Communication status is reflected in the controller using the same module status
words that would condition inputs from a physical control panel. A programmer or technician
can even use I/O forces in the controller when troubleshooting. Be sure to use this module’s “I/O
Momentary Button” for highly reliable momentary pushbuttons.

* Laying out tags in controller memory for efficient access from an OPC driver is no longer a
design consideration on the OPC side. Data for an I/O connection is naturally packed into single
packets, typically up to 500 bytes in each direction (larger with some PLC brands/models), with
near-zero per-item overhead. Multiple emulated I/O modules can be used to optimize update
rates, via the scanning controller’s RPI settings.

* 1/O data is transmitted with fire-and-forget UDP packets. This allows fast packet rates without
risking the hiccups and hesitations that occur in TCP connections when packets are lost in transit.
High resolution data can be transmitted in each packet in a best-effort recording scheme, or with
simple echo algorithms for burst-transmitting buffered records.

6.1.1 Solo I/O Module Emulation with Logix Processors

For small data transfer applications that only Selet Mool Type

need a single pair of 500-byte buffers, targeting | s i becorey [Foores

a single driver instance, the Generic Ethernet == e S ¥
Module is the easiest to configure. In full-size F—— Fo— PEP—r—

1756-Lxx processors, this module may be added e e e e e
to the I/O tree while in Remote RUN. (And
deleted on the run if no code is using its I/O

buffers.)

In an RSLogic 5000 project, right click on the
“Ethernet” icon in the I/O Tree and select “New
Module...” to open the module search dialog.
Enter “generic” in the search box to show the
ETHERNET -MODULE and the ETHERNET -BRIDGE

2 of 295 Module Types Found Add to Faverites

7] Close on Create Create | [Close | [Help |

options. Select the ethernet module as shown in Figwre 8- Generic Module Selection

Figure 8, then click the “Create...” button to proceed.

Set the initial properties of the new module in the following dialog, as shown in Figure 9. If the
scanning controller’s logic will be directly accessing the module buffer as separate variables, be sure to
select an appropriate Communication Format. The input and output data buffers will be set to that data
type. For maximum flexibility when copying to and from structured data types, use one of the SINT
communication formats.

Page 28 of 67

September 23, 2024 [UTORBGN
Ignition EtherNet/IP Module User Manual e
EtherNet/IP Communications Suite

Supply a module name, the IP address of the driver instance’s | ***** =
Port, and the assembly numbers to use. Any of the buffer Vo S T

sizes may be set to zero to disable that function, but assembly | v o Cocecn e
numbers must always be provided. These values may be prictpon R
adjusted later from the “General” tab of the module's e L RN L
properties dialog, except for communication format. ssioe i S e
Note that the Configuration assembly buffer is only sent from Ht~§§§§:twj'§i';.

the scanning controller when making the initial connection. ot o s e ——
It is limited to 400 bytes instead of 500 bytes, as the data for rEADaSDINT Uimore

that buffer must fit in the same Forward Open request LB

message that establishes the connection. §E§E§§%ﬁ;'t

After configuring the general properties of the I/O fravss v ViR

connection, adjust the requested packet rate and other Figure 9: Logix Generic Ethernet Module

connection properties in the second tab of the module properties dialog, shown in Figure 10. If the
version of Logix used allows, consider setting the “Unicast” checkbox to maximize the efficiency of the
switches carrying your network traffic.

Select a packet rate that meets your application needs, but 2] Module Propedies Repor: Loca [ETHERNET MODULE 1Y) 58
. General| Cannection | Moduls Info

avoid going significantly faster, as Java’s garbage collection

algorithms can interfere with packet processing. Be aware

Requested Packet Intsrval [P} 00 ms (1.0-3200.0 ms)
Inhibit Madule

that Very hlgh paCket rates Wlll consume Substantial RAM Major Fault On Contraller | Connaction Fails Whils in Run Mods
and CPU time. Java’s MaxGCPauseMillis configuration e e Enepled?
property should be set to a value less than or equal to the e Fah

fastest RPI between the PLC and Ignition. Use java’s
detailed garbage collection logging facility to verify that your
Ignition server can keep up with your packet rate. Inductive
Automation’s forums have guidance on optimizing and
monitoring Java’s performance, such as this forum thread.

Status: Offine: Cancel Apply Help

Figure 10: Logix Generic Connection Options

For each assembly number you use, create the corresponding assembly in the driver instance, along with
one or more Logix Tags to actually hold the data. The module creation dialog only offers arrays of basic
data types for the scanning controller side of the connection, but you may use any array or structured
data type on the Ignition side that suits your needs. In the scanning controller, the controller tags will
have entries composed of the module name, a colon, then I, O, C, or S, depending on which assemblies
you set up.

For the most predictable and maintainable data traffic, consider having the scanning controller contain a
structured data type and controller tag for each I/O buffer. Use synchronous copy instructions (CPS) to
move raw data from the generic module’s input array to the structured input tag (at the beginning of the
ladder code), and from the structured output tag to the output array (at the end of the ladder code). Use
the same data types and tag names in the Ignition driver instance, pointing the Ignition side assemblies at
the named structured tags. With this architecture, data written by ladder logic to the structured output
tag will appear in Ignition with the same name, and data written by Ignition will arrive seamlessly in the
ladder logic.

Page 29 of 67

https://forum.inductiveautomation.com/t/gateway-java-question-7-7-2/10402/6

September 23, 2024

Ignition EtherNet/IP Module User Manual
EtherNet/IP Communications Suite

UG Ara

PROFESSIONALS
uc,

6.1.2

When a single scanning controller needs more than a pair of
500-byte I/O buffers in your Ignition server, or there are other
reasons to spread your connections across multiple driver
instances, use backplane addressing in the virtual chassis to
reach additional instances. In RSLogix, this functionality is
provided by the ETHERNET-BRIDGE generic chassis — the other
choice shown in Figure 8 above.

The ETHERNET-BRIDGE module type exposes all driver
instances, by slot number, to the scanning controller. When
added to the I/O Tree, this module offers no data buffers of its

Multiple 1/0O Module Emulation with Logix Processors

own. Instead, it provides a named virtual backplane via a single IP address. It doesn’t matter which
driver instance has the IP address assigned to a port — all access will include slot number reference.
After clicking “Create”, complete configuration of the virtual chassis by supplying a name and IP

address.

With the bridge module added to RSLogix, the individual
driver instances can be added to the “CIP Bus”. Right-click
on the “CIP Bus”, then select the CIP-MODULE (the only
choice) to create. Provide details for the module as for the
solo ethernet module, but provide a slot number instead of an
IP address.

Complete the module configuration via its “Connection” tab
within the module properties dialog. Set an appropriate
Requested Packet Interval and Unicast mode. Each virtual
module on the backplane has its own communication setup.

Select a packet rate that meets your application needs, but
avoid going significantly faster, as Java’s garbage collection
algorithms can interfere with packet processing. Be aware
that very high packet rates will consume substantial RAM
and CPU time. Java’s MaxGCPauseMillis configuration
property should be set to a value less than or equal to the
fastest RPI between the PLC and Ignition. Use java’s
detailed garbage collection logging facility to verify that your
Ignition server can keep up with your packet rate. Inductive
Automation’s forums have guidance on optimizing and
monitoring Java’s performance, such as this forum thread.

5| Module Properties Report: Local (ETHERNET-BRIDGE 1.1) (=l
General | Connection | Module Info | Port Configuration | Port Diagnostics
Type: ETHERNET-BRIDGE Generic EtherNet/IP CIP Bridge
Parent, Local
r— DBridee Addiess / Host Name
Desciption @ IPaddess 192 . 188 . 0 . 5§
Host Name:
Status: Difine Cancel bopl Help
Figure 11: Logix Generic Chassis
New Module (=l
Type: CIP-MODULE Generic CIP Module
Parent, 1DBridge
fiat Connection Parameters
Bz e Assembly
Instancs: Siee
Desciption _
Input 1 125 = (326
————————————— Ouput 2 1243 (32
Comm Format. | Data - DINT - IE—
e s = Configuration: 3 0 2 (8bit)
7] Open Module Propetties [ok [coma | [rep
Figure 12: Logix Generic Chassis Module
5| Module Properties Report: I0Bridge (CIP-MODULE 1.1) [zl
General| Cannection | Moduls Info
Requested Packet Interval [P 50/ ms [0:2-7500ms)
Inhibit Module
Maior Fault On Controlle If Connection Fails whie in Aun Mode
7] Use Unicast Cannection over EtherNet/IP
Module Faul
Stetus: Offine Cancel Apply Help

Figure 13: Logix Generic Chassis Module Connection Options

After configuration, each virtual I/O module's data buffers will be created in the processor's Controller
Tags using the virtual chassis module name as a prefix, followed by a colon and the slot address,
followed by :C, :1, :O, and/or :S, depending on the communication format and assembly sizes specified.
Note that the module controller tags are listed under the virtual backplane's name and slot, not under the

individual module's name. In the example shown, the module
I0Bridge:0:C, IOBridge:0:I, and I0Bridge:0:0.

named “First” has controller tags:

Remember that each virtual module in the virtual chassis must correspond to a driver instance in Ignition
with that slot number and the driver instance must have assemblies set up the same as when using the

Page 30 of 67

https://forum.inductiveautomation.com/t/gateway-java-question-7-7-2/10402/6

September 23, 2024 [UTORBGN
Ignition EtherNet/IP Module User Manual e
EtherNet/IP Communications Suite

solo connection. If multiple identical modules are needed, use the Target Driver to populate multiple
virtual slots with a shared XML configuration.

Consider a host driver XML configuration as shown in Figure 14, for an instance in virtual slot zero,
where MultiSlaveIn and MultiSlaveOut are arrays of structures (one structure intended per slot).

<Controller>
<DataTypes>
<DataType Name="SlaveIO t" Alignment="-4" Handle="e478">
Bits=DINT
Enable=HostedBy Bits.0
Padding=DINT
A=LINT
B=DINT[2]
C=INT[4]
D=SINT[8]
</DataType>
</DataTypes>
<Tags>
<Tag Name="MultiSlaveIn" Definition="SlaveIO t[100]"/>
<Tag Name="MultiSlaveOut" Definition="SlaveIO t[100]"/>
<Tag Name="SlaveConfig" Definition="SINT[20]"/>
<Tag Name="SlaveEcho" Definition="LINT"/>
</Tags>
<Assemblies>
<Assembly Name="InputToMaster" CxPt="1001">
<Member Bits="64" Target="SlaveEcho" />
<Member Bits="320" Target="MultiSlaveIn[O]" />
</Assembly>
<Assembly Name="OutputFromMaster" CxPt="1002">
<Member Bits="64" Target="SlaveEcho" />
<Member Bits="320" Target="MultiSlaveOut[O]" />
</Assembly>
<Assembly Name="ConfigFromMaster" CxPt="1003">
<Member Bits="160" Target="SlaveConfig" />
</Assembly>
</Assemblies>
</Controller>

Figure 14: Multiple 1/0 Module Host Example

{Tag data initialization bytes, Scanner module configuration, Jython code block, and programs blocks
omitted for clarity. }

Page 31 of 67

September 23, 2024 [UTORBGN
Ignition EtherNet/IP Module User Manual e
EtherNet/IP Communications Suite

A Target Driver instance could then be configured as shown in Figure 15 to expose the rest of the slots
(1-99) to the PLC, with payload redirection to/from the appropriate element of each array in slot zero.

<Controller>
<Tags>
<Tag Name="SlaveConfig" Definition="SINT[20]"/>
<Tag Name="SlaveEcho" Definition="LINT"/>
</Tags>
<Assemblies>
<Assembly Name="InputToMaster" CxPt="1001">
<Member Bits="64" Target="SlaveEcho" />
<Member Bits="320" Target="(slot O)MultiSlaveIn[slot]" />
</Assembly>
<Assembly Name="OutputFromMaster" CxPt="1002">
<Member Bits="64" Target="SlaveEcho" />
<Member Bits="320" Target="(slot O)MultiSlaveOut[slot]" />
</Assembly>
<Assembly Name="ConfigFromMaster" CxPt="1003">
<Member Bits="160" Target="SlaveConfig" />
</Assembly>
</Assemblies>
</Controller>

Figure 15: Multiple 1/O Module Target Example
Within the input and output assembly definitions, the payload members point into slot zero with a
segment prefix and then use the predefined slot variable as a dynamic subscript into the Host Driver
configuration’s array of structures.

With Rockwell PLCs’ buffer size limits, and correspondingly larger structures than shown here, the total
high speed traffic from PLC to Ignition could be as large as 49,600 bytes, while also sending 50,000
bytes back to the PLC. At short packet intervals.

6.1.3 Redundancy Considerations

When Ignition is operating as a redundant pair, both servers will be listening and responding on their
respective IP addresses, but only the active gateway will supply live data. The PLC connections
described above must be duplicated for the backup gateway, and there must be PLC logic that examines
a heartbeat or other changing data from the gateway to determine which nodes to use.

6.2 Using Passive Messaging

In addition to, or instead of, I/O connections to Ignition, EtherNet/IP-equipped processors can use data
table messaging with driver instances. When configuring a Logix message instruction, select CIP
Generic and fill in the details for class, instance, attribute and service code, or use one of the pre-defined
message types. CIP Data Table Read and Data Table Write are supported using the driver instance’s tag
names. When configuring the communications path (Figure 23), select a module you’ve placed in the
I/O tree, or add and select one of the above virtual modules with Comm Format “None”, or select the
closest network component (ENBT, etc) then manually add to the connection path.

As with I/O connections, a redundant gateway pair will listen and respond at both the master and backup
IP addresses. The tag reads from Ignition must be examined to determine which is the active gateway
when both are running.

6.3 Using Producer Tags

All tags defined in the driver instance are automatically available as producer tags to any Logix or
compatible processor that wishes to consume them. The data type in the Logix processor must be 500
bytes or less or the software will not permit configuring consumption at that end. The tag in the driver
instance can be longer — only the beginning of the driver’s tag will be transferred in that case.

Page 32 of 67

September 23, 2024 AUTORATION
Ignition EtherNet/IP Module User Manual o i
EtherNet/IP Communications Suite
Logix processors require that the target for their consuming tag show up in the I/O tree, with all
intermediate nodes. If a Solo or Multiple Module I/O target is present in the I/O tree as described above,
you may use the node in your Logix program for consumer tags as well. Otherwise, follow the
instructions for either a Solo or Multiple Module setup but select “None” for the Comm Format.

On the Logix side, it is not possible to inhibit individual consumer tags. One can only inhibit nodes in
the I/O tree, which inhibits all consumer tags pointed at or through that node.

6.3.1 Producing to Logix Structure Types

When a Logix PLC is connecting a structured consumer tag to your producer tag, it will make the
connection request with a specific CRC in extra connection data. Ignition will ignore this CRC and
deliver the tag data anyways. Ignition will also ignore any length mismatch, and will send exactly the
number of data bytes requested, adding zero padding to the packet if needed. Ensuring that the
structures on each end are byte-for-byte payload compatible is your responsibility.

6.3.2 Producing Data State Change Events

This driver has no way to suppress data state change events that occur when you (or anything else)
writes into a producer tag. If you wish to not trigger fresh data events in a connected Logix event task,
do not allow any writes to that OPC item on the Ignition side. Structure your code to perform all such
writes with a single system.tag.writeBlocking() or system.opc.writeValues() function call.

There is no way to restart the RPI timing for an Ignition producer tag. Select an RPI that minimizes the
application latency when a change is transmitted.

6.4 Using Consumer Tags

When the Enhanced Host Driver is licensed (aka Scanner Option), Consumer Tags may be configured to
receive data from Producer Tags in a Logix processor or compatible PLC. Each Consuming Tag
connection is actually a form of I/O connection using User Datagrams, and is controlled in the driver
instance by the Scanner Manager. The “Producer” setting in the tag configuration is the Route Path to
the target Logix controller, the “Source Tag” setting is the Application Path in the Logix Controller
(often just a tag name of a real Logix controller), and the RPI is the input RPI from the controller to the
driver instance. The heartbeat output RPI is 2.5 times the input RPI.

When present, these settings cause the Scanner Manager to create additional Scanner instances with the
settings needed to make the connection. These will show up in the OPC Browser under
Controller:Internals => Scanner Mgr, by name, along with the named I/O Scanner modules.

The scanner instances created for consumer tags have a restricted list of attributes, as there is no
configuration or output data to send, and the input data is automatically routed to the tag. Runtime
connection monitoring and adjustment is otherwise the same. Note that consumer tags have a realtime
mode Dword for special cases.

While connected, the latest packet consume timestamp is available at TagName (attr 164)@usec.
These and other attributes (see Monitoring and Runtime Adjustment below) may be found in the OPC
Browser under Controller:Internals => Lgx Symbol Mgr, by instance number and tag name.

6.4.1 Consuming Logix Structure Types

When the producer tag in the Logix processor is a structure type, particularly when carrying a
CONNECTION STATUS member at the beginning, the connection will fail for a simple Source Tag name.
For such cases, use the following construct in the Source Tag setting:

(cls 105 inst 1)ProducerName(cxpt 1 data[l 4 0x02a0 OxWXYZ])

Page 33 of 67

September 23, 2024 [UTORBGN
Ignition EtherNet/IP Module User Manual o i
EtherNet/IP Communications Suite
In this construct, replace WXYZ with the hexadecimal CRC of the data type. If you re-create the data type
exactly in the Host Driver, it’s CRC shown on the configuration page is reasonably likely to be correct.
If not, you may need to temporarily point this module’s Generic EtherNet/IP Driver at the target
processor, and examine the probe log or the type’s auto-generated JSON to obtain this value. (The
hexadecimal will be simplified to decimal for you.)

Also use the above Source Tag construct when the tag is an array of structures..

6.4.2 Consuming Data State Change Events

Normally, class 1 traffic includes a 16-bit sequence number that the sender changes to indicate content
has changed. With Logix output buffers and producer tags, by default, the number changes for any
ordinary changes/copies/writes into the subject tags. However, Logix programs can have automatic
output processing turned off, which suppresses the change notice for output buffers in the corresponding
program. Similarly, a Logix Producer Tag can be configured to “Send Data State Change Events to
Consumer(s)”, with which it will not automatically send change notices to consumers. The PLC
programmer must then use the I0T instruction to bump the sequence number manually on a per-tag or
per-output-buffer basis.

On the Ignition side, there are two ways to see a state change event:
* Monitor the “Change Timestamp” available as TagName (attr 163)@usec

* Use a scripted consume event, and check the .detail field of the event. See Jython Data Events
for further information.

Be aware that the Logix IOT instruction will cause an immediate packet transmission, and will restart the
RPI timer.

6.5 Using Active I/O Scanning

Under an Enhanced Host Driver license (aka Scanner Option), direct scanning of EtherNet/IP I/O
devices is available. This eliminates the need for a PLC in light-duty applications, and allows the use of
listen-only connections to monitor EtherNet/IP devices that are slaved to an actual PLC.

The Module Scanner within a driver instance
Originates Input and/or Output Connections using Name Required. Must follow Logix standards for identifiers.
. . . Catalog 1734-0OE2VIC
Transport Class 1, Scheduled prlorlty’ and Cycllc Number Target's Vendor Product Identification or SKU. Optional, informational.
. 1
tlmlng- Support for Change_Of_State tlmlng 1S Vendor Target Device's Vendor Code registered with ODVA. Electronic keying will be disabled
if omitted.
planned for a future release. s
. . . Device Type Target Device's general product type code per ODVA. Required if Vendor is specified,
Much of the information needed to complete this anorea ctveruize. ! "
COl’lﬁguraUOl’l IS Obtall’led fI'OHl an I/O mOdlﬂe’S EDS zronddeuct T;r)rget Vendor's Unique Product Code for this device. Required if Vendor is specified,
. . . ignored otherwise.
file. See the section on “Interpreting EDS Files” for 3
: : : : o ajor Version of the device firmware. Indicates major feature changes and possible
detalls. The detalls Wlll be entered ln three pal’lelS Of Version Z’Ior%pa\;mi\ity chfa;hgeg. Requ;ed ifVenéodr \stspecwﬂjed,f\gntored gthegrwwse‘dp .
. . 1
the New I/O MOdUIe and Correspondlng Edlt page’ :-’1;:5)';” Minor version of the device firmware. Indicates bug fixes or minor features. Required if

Vendor is specified, ignored otherwise.

for Identity, Connection, and Data settings.

~
Enforce EKey Whether to require the target to verify compatibility. Ignored if Vendor is omitted.

6.5.1 Target Module Electronic Keying

The first of three configuration blocks supplies all of

the electronic keying information, if needed. The details for this section are automatically filled in if a
real L5X is imported from RSLogix. Otherwise they can be obtained from the manufacturer’s
Electronic Data Sheet file. Some non-compliant targets do not work if an electronic key is present, even
if enforcement is turned off. For such cases, omit the vendor key to disable the feature entirely.

Figure 16: Scanner Electronic Keying

Page 34 of 67

September 23, 2024 AUTOmATION
Ignition EtherNet/IP Module User Manual o i
EtherNet/IP Communications Suite

If the electronic keying information is present, the scanner module list on the main configuration page
will show the expected EDS file name that Logix products use when registering a product in the
hardware database. The files are usually stored in C:\Program Files\Rockwell Software\RSCommon\
EDS, or C:\Users\Public\Documents\Rockwel\EDS, or a similarly-named folder. The expected file
name displayed includes the minor number as the last two hexadecimal digits, but it is common for
registered products to use “00” in the file name instead of the minor version. You can use this
information to get the EDS file from an RSLogix install instead of hunting the web for it. (You are
likely to need it.) The example in Figure 16 produces the file name 0001007300380301.eds.

If the target module has an embedded EDS file available for upload, you can use the Client Driver to
obtain it for you.

6.5.2 Target Module Connection Detail
The second of three configuration

blocks supplies supplies the network ; ot 2 10.16.7.11 50t 2

path from the driver instance to the RO P Route Pah o target device, Wi cprional EKey and/or Nefwork Segmeris preceding port ssaments
target device, and the Transport Class 1 |mse soe comrun atons o this device

protocol modes and speeds. Generally, o

the CIP Route starts with “port n et ey o P TR, T o o g e

ipaddr”, where “n” is the port NUMDBEr 8195 17 uos yucac pacers nsmas e on vt Tty e

in the driver instance that is on the same 250000

subnet as the target device, or on the WL Requestad Ouiput Packet nterval, microseconds. Hesriseat nterval o output data

subnet of the first hop. And “ipaddr” 1S |, .. | Runide 32-bit Header v

OUEFME ReaTime Mode Output Format. Typically the Run/Idie 32-bit Header.
the IP address of that target/first hop. If Cictad: R 2o Hemr)

that first hop is an 1756-ENXT, BIS9% Uop Unicast packets nstead of Hulficat on Tnput. Typically fase, especially o older devices
1734-AENT, or similar chassis ethernet o | 250000

interface, the next tokens will be “slot |** Reguesied Input Packet Iterval, microseconds. Hesrisest nterval f o input data

m” to identify the target module. For s | Modeless "

In Fmt RealTime Mode Input Format. Typically Modeless.

the example in Figure 17, the first hop
1S a 1734-AENT and the 1734-0E2V is the
second I/0O module in the chassis.

Figure 17: Scanner Route and Connection Details

The Inhibit checkbox prevents the driver instance from opening the connection. This is a writable
attribute of the Scanner Module object under the Scanner Manager object, if you need runtime control of
the connection. The Direction setting is used to manually configure the equivalent of a Consumer Tag,
but to an alternate input object (an assembly, perhaps).

The Unicast, RPI, and RT Mode Format settings directly impact the Forward Open Request message,
and must be compatible with the target object. Keep in mind that the RPI settings are in microseconds,
where RSLogix presents these as milliseconds with one decimal place. The driver instance will try to
honor whatever is entered, though individual packets may be rounded off to the nearest millisecond, and
Java garbage collection can interrupt.

Page 35 of 67

September 23, 2024 [TONIEIoR
Ignition EtherNet/IP Module User Manual e
EtherNet/IP Communications Suite

6.5.3 Target Module Data
Every I/O module to be scanned

. . assembly 123 cxpt 102 cxpt 101 data[1 0]
needs an Appllcatlon Path that Application CIP Application path(s) within the target device, in order, for configuration, output, and input. May be given in hexadecimal for a "Padded

EPath”, as from an EDS file. May end with a static data segment for configuration.

identifies the objects in the PointAG-C
. . Config Source of dynamic configuration data for Forward Open Requests, Typically "modulename:C" but may be any tag or assembly. Optional.
target deVlCe that Wlll Dynamically added to any static config data in the application path.
.. . h . Config 36
partICIpate 1n the connection. Bytes Optional limit for the number of dynamic bytes used for configuration. Will be truncated to an even number. Ignored if Config is omitted.
i m 1 PointAQ:|
The Canonlcal fO at Supplles Input Destination of input data frem the device. Typically "modulename 1" but may be any tag or assembly. Optional if Output is specified.
four items: a config object path, |wu 5

Bytes Opticnal limit for the number of bytes used for input. Ignored if Input is omitted.

an output object path, an input
object path, and a configuration -

data Segment’ in that order. The |&n=s Gptional fimit for the number of bytes used for output. Ignored if Output is omitted.

CIP SpCCiﬁC&tiOl’l allows a Figure 18: Scanner Data Configuration

device to offer any internal object as a config, output, or input item. The typical I/O device expects
“assembly ¢ cxpt 0 cxpt i”, where ¢, 0, and i are assembly numbers. See also the Application Path

Segments topic.
The optional Config and Config Bytes settings control the construction of a configuration data segment
to include in the Forward Open request message when the connection is started.

PointAO:O

Output
? Source of output data to the device. Typically "modulename: 0" but may be any tag or assembly. Optional if Input is specified.

The Config setting is a tag path within the driver instance that contains the I/O module’s configuration
data. If an L5X file was imported, the tag name and data type will be appropriate, though the initial
values may not be present. It is possible that the actual config data is shorter than the config tag, since
Logix constructs all of its tags in increments of 32 bits. The Config Bytes settings limits the number of
bytes inserted in the Forward Open request when the tag is larger than the module uses. (Consider using
a structure with one of the two 16-bit alignment rules for Config Tag.)

Chassis-based I/O modules may expect a prefix to the config data that is consumed by the chassis. If
constant and a multiple of 16 bits, a static data segment may be placed in the application path. This will
be concatenated with the dynamic data from the Config tag. The example in Figure 18 shows the two
16-bit prefix words needed by the 1734 -AENT adapter to set up the 1734-0E2v module.

At least one of the tags for Input and Output must be specified. If only an Input tag is given, the output
packets will only be a heartbeat or contain the RealTime mode indicator. If only an Output tag is given,
the input packets’ content will be discarded.

Like the config tag, the size of the tag may be larger than the actual I/O module payload. The optional
Input Bytes and Output Bytes settings allow the correct payload size to be specified. The example in
Figure 18 shows an Input Bytes setting of six, required by the 1734-0E2vV module, overriding the tag size
(eight bytes). If an L5X import was used, the tag settings can be expected to be correct, but the size
limit settings might not be correct.

6.5.4 Monitoring and Runtime Adjustment

The bulk of the settings described above show up in the OPC Browser under Controller:Internals
=> Scanner Mgr, by name, and are live at runtime. Attributes 30 through 35 are read-only status values.
The Entry Status, Fault Code, and Fault Information attributes correspond to the module information
available in a Logix processor using the GSV instruction. The actual packet intervals are updated to
reflect any adjustments the device made when it accepted the connection. An entry status of 0x4000, or
16384, signals a running connection.

Page 36 of 67

September 23, 2024 [UTORBGN
Ignition EtherNet/IP Module User Manual e
EtherNet/IP Communications Suite

Attribute #160, the RealTime Mode DWORD, is sent to I/O devices that use a Run/Idle header. It
defaults to 0x1, indicating “Run Mode”. You may write a “0” to signal “Program Mode” to a connected
output module. Each configured I/O scanner maintains an independent “Run Mode” value.

Writing to attributes 1 through 16 changes the parameters of the connection, and generally forces the
connection to close and re-open.

6.5.5 Redundancy Behavior

Scanners defined above will be held in a disabled state on the standby gateway of a redundant pair.

6.6 Using the I/O Momentary Button

g This component is added to the designer’s palette of Vision [&8™ 0" 0 o .)
=z - Components at the end of the Buttons section, as shown in o o
< One-SrotButor Figure 19. After placing one on your window in the Focusale @i
_emmen designer, you must set the Virtual Device Name and Target -
#- ChckBox Tag Path properties to identify the boolean to control. Thisis | L™ e
Crma not a SQLTag address, but the device name and address e M
Fl,;’u oo within the EtherNet/IP module’s virtual backplane. This Masima g Tine
Designer Palee pushbutton bypasses the SQLTags subsystem. These aslly -
properties are not case-sensitive. Pressad Dltaise
Set the Off Value property to True to emulate a Normally-Closed Figure 20: 1/0 Button Properties

pushbutton (e.g. typical Stop buttons). Set the update pace to match, or close to match, the RPI that will
be used in the Gateway-to-Controller communications. Then check the rest of the timing properties’
defaults and adjust to suit your application. A minimum hold-time of five times the RPI is
recommended for Stop buttons (Logix controllers will fault an I/O connection after four missed
packets).

When a user is actually pressing the button at runtime (or in preview mode), background logic will
repeatedly check that the mouse is still pressing the button (or the spacebar is still down if using the
keyboard). If all is still well, the background function will ask the Ul thread to send a ping to the
gateway to report that the button is still pressed. This ensures that a frozen UI also kills the ping
message. The gateway will monitor and enforce the hold time requirements, treating overlapping button
presses from multiple clients as a single timed event. The gateway will expire a button press from a
specific client if that client fails to ping within twice (x2) the Update Pace. The gateway will also report
actual button value changes to all registered buttons (for a given address), whether pressed or not.

Page 37 of 67

September 23, 2024 UTOMETION
Ignition EtherNet/IP Module User Manual e
EtherNet/IP Communications Suite

7 Host and Target Drivers’ Functional Description

The Host Driver yields a single complete EtherNet/IP device in a given slot in the virtual backplane,
with the required CIP objects and several optional objects, plus the objects emulating a Logix
processor’s Data Access objects. The Host Driver includes

7.1 Object Classes, Instances, and Attributes

The CIP specification requires compliant devices to implement a minimum set of object-oriented
services, with a set of specified object classes with well-defined attributes and behaviors, plus vendor-
defined objects and attributes. Objects are nested in a hierarchy of classes, class attributes, instances,
and instance attributes, with further nesting of complex data types. As shown in Figure 21 below, the
Message Router is the foundation of the driver instance, and is directly exposed to Ignition’s OPC
server.

The message router provides access to all other object classes and their instances and attributes using
path segments, described in detail below, to navigate the hierarchy and select a specific object or
fragment thereof. The interface to Ignition’s OPC server translates node address strings into the internal
path segments needed by the message router, and supplies appropriate node address strings to the user
when browsing the hierarchy.

CIP Specification version 3.19 distinguishes between “device scope” objects and “port scope” objects,
with the Connection Manager and Connection List classes assigned to the per-port scopes. Figure 21
shows the unique connection manager and connection list per communications port. The unconnected
message manager (UCMM) in each port is the entry point from the outside. Later versions of the CIP
Specification relax these port isolation rules, but this module implements them.

OS IP Addr for “x”

a 0S IP Addr for “B”

OS IP Addr for “A”

Backplane To
Other Virtual Slots

Ignition OPC
Server

Ethernet/IP Host Device Instance

Figure 21: Driver Block Diagram

The Target Driver is similar to the above, except its Port Manager only has the backplane, port #1,
connecting to other virtual modules. A single Target Driver instance fills multiple slots with identical
virtual modules, all connected just to the backplane.

Page 38 of 67

September 23, 2024 [UTORBGN
Ignition EtherNet/IP Module User Manual e
EtherNet/IP Communications Suite

7.2 EtherNet/IP Encapsulation in TCP/IP

All communication in the EtherNet/IP specification starts with a TCP/IP connection from an originator
to a target’s UCMM in its ethernet port. The unconnected message manager can execute CIP requests in
both port and device scope. The total size of a request and its response must each fit in 504 bytes. If an
ad-hoc request needs to be directed to another port, or out another port to a bridged target, the originator
can wrap the request in an Unconnected Send message.

Message Configuration - ACmsg =

When a Logix processor executes a message instruction where
the “Connected” checkbox is turned off, and there’s any route e [.
path beyond the first IP address, the message will be wrappedin | .. —
an unconnected send with the balance of the route path. Each _ Sowcslenaln 0[5 e
hop will pop off one route path element, keeping the request s R ey % ’
wrapped, until the final UCMM can handle the message directly.

Each hop will keep track of the outstanding requests it has
passed on so the responses can go back to the correct originator. | Geae Gemcwms o5s Goe eiw @
A message sent this way must be small enough that the 2 e B B Code fred0
unconnected send header, the wrapped message, and the

Configuration | Communication | Tag

Emor Text:

intermediate route path will all fit within the 504 byte limit. oo o=
When a Logix processor executes a message instruction where (e o =
the “Connected” checkbox is turned on, it briefly defers the Coneprton | Commncston” [Tag

message until it can construct a routed CIP connection to the —
final endpoint’s Message Router using “Transport Class 3”.

This operation starts with a Forward Open request to the first

hop’s connection manager containing the connection parameters S .

and final target’s route path. When the first hop reports this has Comected Cache Comectins
succeeded, each hop along the route has established buffers and

assigned shortcut “connection IDs” to a connection. Which then | J_o. “™*"» o = =% xmee
allows full-size message requests and full-size responses to flow | cur

back and forth. The Logix processor can then send the original e
request message down this connection, inside the TCP/IP Figure 23: Logix Message Connection

channel.

A Logix processor offers two optimizations when connected messaging is used: 1) caching, and 2) large
buffers. The “Cache Connections” checkbox determines if the Logix processor will delete the
connection soon after the message completes, or if it will hang on to the connection for several seconds
in the hope that other message instructions will need to talk to the same endpoint. Or the same message
is repeated soon. This dramatically improves message response times. The “Large Connection”
checkbox instructs the processor to use ~4k message buffers within the TCP/IP channel instead of the
normal 512-byte buffers. This is an optional feature in the specification that neither very old processors
nor many I/O devices support.

7.3 EtherNet/IP Encapsulation in UDP/IP

I/O traffic in EtherNet/IP is carried in User Datagrams, aka UDP/IP, not inside a TCP/IP connection.
User Datagrams also carry Producer/Consumer tag data. User Datagrams allow processors and 1/0
modules to ignore the occasional lost packet and keep going, as long as the gap isn’t too large. When a
TCP/IP channel loses a packet, it is obligated to report the missing packet and get it retransmitted before
continuing with any other data delivery. (TCP/IP itself requires this—it isn’t a requirement added by

Page 39 of 67

September 23, 2024 [UTORBGN
Ignition EtherNet/IP Module User Manual e
EtherNet/IP Communications Suite

EtherNet/IP or other protocols.) This is the root cause of many hiccups in data delivery for most HMIs
and typical SCADA communications.

When a Logix processor or other EtherNet/IP scanner establishes an I/O connection, it starts by opening
a TCP/IP connection to the first hop in the route and then issuing a Forward Open request message to
that device’s connection manager. The connection parameters in this case specify “Transport Class 17,
the target endpoints, the timing requirements, any custom IP socket details, and an optional payload for
configuration. After the success message is returned inside the TCP/IP channel, UDP data traffic
commences.

The TCP channel can expire while the UDP traffic runs, if no other connection needs the first hop
UCMM. A follow-up Forward Open request may be generated (also via TCP/IP) if the data for the
configuration assembly changes. UDP data traffic continues until either 1) a Forward Close request is
sent via TCP/IP, or 2) either direction times out on consecutive lost packets. Missing UDP packets do
not generate any kind of retransmit request. The receiver simply waits for the next scheduled packet.
When Logix processors connect to network /0, they generally specify four (4) missed packets as the
broken connection limit.

Page 40 of 67

September 23, 2024 [UTORBGN
Ignition EtherNet/IP Module User Manual e
EtherNet/IP Communications Suite

8 Element Path Segments

Element Paths in the CIP specification are [conseer tegs- sndgetconsatn =le sl
sequences of binary encoded keys that Scope [ndge L T ML -
. B Lo | [Mame =z | Alias For Base Tag Diata Type Deseriplior * |4
select an object or data item within an S et 5 MODULECT B
. . + ridge:| ata E]
EtherNet/IP device (or other CIP devices, S 251755 MODULE DIV 0tec H
. . — |DBridge:01. Data =
like DeviceNet or ControlNet). The e o
. . . S, + ridge: (k] Datal
specification refers to the individual e o
+ ridge: 0l Datal
encoded keys as Path Segments. The CIP + 081501 Dl ot
. . =/ 10Bridge:0:0 AB:1756_MODULE_DINT_20Eptes:..
specification has segment types for a B oney
. . . . + ridge:0:0.Datal
variety of items, including the ETEETE ot
: . . . + ridge:0:0.Datal
class/instance/attribute values in the object L o0 ot
. + ridge:0:0.Datal
model described above, as well as symbols, S bt 20T ODULE
array subscripts, and bit numbers within S 461755 HODULE_DINT. 206 ex
. = I0Bridge:1:.Data DINT[S]
integer data. There are also segment types £ ottt ot
that declare or define data types. + 08idge 1Dl DT
+ 10Bridge:1:1.Data[3] DINT
Since this module’s applications are E |0gmls:'1‘_dugm e EI;WT?EB_MDDULE_DINT_ZUByIEs..
dominated by the tags and types used T i
within Allen-Bradley’s Logix family and |/« Serrfsse jediiogs/ ———
’ 1 1 ’ Figure 24: Ethernet Bridge Controller Tags
Omron’s NJ/NX family, this module’s g g g

simplest address formats mimic the syntax a programmer would use for a controller tag in ladder logic.
OPC Item paths for this module are the string formats for application paths as described below.

8.1 Path Segment Strings and Encodings

The CIP Specification, Volume 1 Appendix C, defines how path segments are encoded “on the wire”.
The first byte of encoded segments is a segment type code. This module can encode and decode nearly
all of the segment types defined by the specfication, and can both display human-friendly string
representations and parse those string representations.

This module also repurposes several of the reserved type codes as private extensions (along with some
reserved secondary codes for defined constructed types) in order to handle some of the Omron datatypes
(that otherwise clash with CIP port segments), to support enhanced formal structure definitions, and to
distinguish between requirements for padded epaths versus their packed form.

8.1.1 Element Path String formats

While defined in the specification individually, most uses of path segments involve multiple selectors,
possibly including data definition segments. Since both humans and Ignition’s OPC server present
address information as strings, there needs to be a reliable conversion from string to list of path
segments, and the inverse conversion for path segments decoded from the wire or otherwise obtained
internally.

As noted above, the format of path strings that will be used in OPC Item Paths and elsewhere throughout
the module is intended to closely conform to the syntax a PLC programmer would expect within their
programming environment. Paths starting with a symbol, and composed of symbols and subscripts and
bit numbers, with dots and square bracket punctuation, are the common form for both Allen-Bradley and
Omron, and are directly parsed in this module. This simple form, with no whitespace nor extraneous
punctuation, having only unsigned decimal subscripts or bit numbers, is called a “tagpath”, and any
collection of path segments that can be reversibly represented this way will be so rendered. Such paths
are composed entirely of (ansi) symbol segments, member segments, and bit index segments.

Page 41 of 67

September 23, 2024 UG Ara

Ignition EtherNet/IP Module User Manual FESseSt———"
EtherNet/IP Communications Suite

However, there are many more segment types, including the class, instance, and attribute segments that
dominate generic CIP messaging. To handle the rest of the segment types, the string parser and string
renderer work with “token strings”, where specific keywords identify segment types, and arguments
supply any other information a segment type uses. When used together with tagpaths, or when
ambiguous, the token string form is surrounded by parentheses.
Tokens are separated by whitespace. In a token string, if any token argument needs whitespace or
punctuation or special characters, it can be enclosed in single or double quotation marks. Quoted token
arguments may use standard backslash escapes for common special characters.
A tagpath starts with a symbol, and is optionally followed by decimal subscripts enclosed in square
brackets and more dot-delimited symbols, in any order, and optionally ending with a dot-delimited
decimal bit number. Multiple consecutive subscripts may be comma-delimited within one set of square
brackets. No whitespace is permitted. Some examples:

tag

tag[3,7]

tag.member

tag.member[25]

tag.member[3].submember

tag.member[0].5

The complete segment path string syntax combines one or more tagpaths and token strings, like the
following patterns:

tagpath
tokens and args'
(tokens)
(tokens)tagpath
tagpath(tokens)
tagpath?(tokens)tagpath...
(tokens)tagpath(more tokens)tagpath...
When displaying segment paths, in most cases, the renderer will produce the shortest available form.

8.1.2 Segment Type Tokens Index

With tokens for secondary forms, and abbreviations and macros, the following are all of the keywords
recognized by the string parser:

aliasof alignl align2 align2c align4 align4l align8 align8l ansi
assembly assy attr attribute bcd2 bcd4 bcd8 bit bool booll6
bool32 bool64 byte class cls connection conx conxpoint cxmgr cxpt
data date date and time defstruct dint dt dword ekey engunit
epath eth mac addr ethmac fixedtag ftag ftime hostedby identity
inh inhibit inst instance int itime lint lreal 1ltime lword memb
member memberhandle membernumber membhand membnum msgrouter ntime
null odo odometer omdatens omdt omron date and time
omron_time of day omrondt omrontod omtimens omtod padbyte

1 To omit the parentheses, the token string must have white space or an equal sign before any other
punctuation.

2 When token strings follow a tagpath, that preceding tagpath cannot end with a bit number.
Page 42 of 67

September 23, 2024 [UTORBGN
Ignition EtherNet/IP Module User Manual e
EtherNet/IP Communications Suite

padepath param parameter port real sched schedule service sgnodo
short string shortstring signed odometer sint slot stime string
string2 stringi struct sub subscript svc symbol tag template time

Except as noted below for Automation Professionals’ private extensions, and the extensions to support
Omron’s vendor-specific types, encodings are per the CIP specification.

8.1.3 Segment Type Code Summary

Type codes (first byte of the encoded form) are summarized here. Shortest token abbreviations shown.
Italics are for implicit forms. Gray shading is for reserved values, gold shading for Automation
Professionals’ extensions, and rose shading for unimplemented values:

Code: Token Code: Token Code: Token Code: Token
0x00: port O n 0x01: slot n 0x02: port 2 n 0x03: port 3 n
0x04 through 0x0b: single byte addresses for ports 4 through 11

0x0c: port 12 n 0x0d: port 13 n Ox0e: port 14 n 0x0f: port p n
0x10: port 0 aa 0x11l: slot aa 0x12: port 2 aa 0x13: port 3 aa
0x14 through Ox1lb: multi-byte addresses for ports 4 through 11

Ox1lc: port 12 aa Ox1d: port 13 aa Oxle: port 14 aa Ox1f: port p aa
0x20: cls c {8bit} 0x21: cls c {16bit} 0x22 0x23

0x24: inst i {8bit} 0x25: inst i {16bit} 0x26: inst i {32bit} 0x27

0x28: memb m {8bit} 0x29: memb m {16bit} Ox2a: memb m {32bit} 0x2b

Ox2c: cxpt p {8bit} Ox2d: cxpt p {16bit} Ox2e: cxpt p {32bit} ox2f

0x30: attr a {8bit} 0x31: attr a {16bit} 0x32 0x33

0x34: ekey k... 0x35 0x36 0x37

0x38: svc s {8bit} 0x39 0x3a 0x3b

Ox3c: *ext* e n {8bit} 0x3d: *ext* e n {16bit} |0x3e: *ext* e n {32bit} |Ox3f

0x40: 0x41: sched d {8bit} 0x42: ftag d {8bit} 0x43: inh ms {8bit}

0x44 through 0Ox4f
0x50: safety s {n byte} [0x51: inh ps {n byte} [ox52: auth a {n byte} 0x53

0x54 through 0x5e Ox5f: *ext net* {n byte}
0x60: symbol s {n byte} |0x61 through 0x7f: symbol s {1-31 byte}
0x80: data d {n byte} 0x81 through Ox8f

0x90 0x91: ansi s {n byte} 0x92 through 0x9f

Oxa0: struct n Oxal: abbrev array Oxa2: formal struct Oxa3: formal array
Oxa4: alignl struct 0xa5: align2 struct 0xa6: align4 struct Oxa7: align8 struct
0xa8: handle struct 0xa9: align2c struct Oxaa: align4l struct Oxab: align8l struct
Oxac: dynamic array Oxad: hbit h.b Oxae: struct s Oxaf: aliasof tagpath
0xb0: defstruct c 0xbl 0xb2 0xb3

0xb4: bcd2 0xb5: bcd4 0xb6: bcd8 0xb7: enum

0xb8: omdatens 0xb9: omtimens Oxba: omdt Oxbb: omtod

Oxbc: union Oxbd Oxbe Oxbf: omstring

0xcO: utime 0xcl: bool 0xc2: sint 0xc3: int

Oxc4: dint Oxc5: lint 0xc6: usint 0xc7: uint

0xc8: udint 0xc9: ulint Oxca: real Oxcb: lreal

Oxcc: stime Oxcd: date Oxce: tod Oxcf: dt

0xd0: string 0xdl: byte 0xd2: word 0xd3: dword

Oxd4: lword Oxd5: string2 Oxd6: ftime 0xd7: ltime

0xd8: itime 0xd9: stringn Oxda: shortstring Oxdb: time

Oxdc: epath 0xdd: engunit Oxde: stringi Oxdf: ntime

0xe0 through 0xe3: future elementary types
0xe4 through Oxff

Type code 0x34 for Electronic Keying has two specified secondary key type codes, 4 and 5. Only key
type 4 is supported.

Type codes 0x3c through 0x3e for Extended Logical Segments have six specified secondary type codes.
All are supported.

Type code 0xb0 for Defined Constructed types has three specified codes for subtypes, all supported, plus
four private extension subtypes.

Page 43 of 67

September 23, 2024 [UTORBGN
Ignition EtherNet/IP Module User Manual e
EtherNet/IP Communications Suite

8.2 Route Path Segments

Path segments in this group are used throughout the CIP object model to indicate the path from device to
device and to control communications between devices and their application objects.

Port segments are used within Route paths to define the hops from one device to another. Route paths
can also include Electronic Key segments and Network Segments.

8.2.1 Port Segments

Syntax is “port n a”, where 0 <n < 65535 and either 0 < a <255, or “a” is an ASCII character string of
of zero to 255 bytes. Port numbers less than 15 are encoded with an abbreviated form, as are numerical
addresses between 0 and 255. Alternate syntax “slot a” indicates port #1 and requires 0 < a < 255. The
convention is to supply IP addresses or host names in ASCII form.

8.2.2 Electronic Key Segments

Type code is always 0x34. The following byte is a key format code. Only format #4 is supported at this
time. The payload for format #4 is eight bytes, containing vendor, device type, product code, and

e .9

revision. Syntax is “ekey v d p mj.mn ¢”, where “v”, “d”, and “p” are unsigned 16-bit values, “mj” is an
[Pl

unsigned 7-bit value, “mn” is an unsigned 8-bit value, and “c” is one of “enforce”, “allow”, “0”, or “1”.
See CIP Volume 1 Table C-1.5 in §C-1.4.2 for details.

8.2.3 Network Parameter Segments
The specification provides several segments to be used in route paths to alter network behavior in
special cases. Note that the token string form of the inhibit segment always uses integer microseconds.

The millisecond format with type code 0x43 is automatically selected if the microsecond value is
compatible. Details are in CIP Volume 1 §C-1.4.3.

Page 44 of 67

September 23, 2024

Ignition EtherNet/IP Module User Manual
EtherNet/IP Communications Suite

8.3 Application Path Segments

Path segments in this group are used throughout the CIP object model to indicate the path within a
device to desired objects or data fragments within objects. In some contexts, they can carry
configuration information that will apply to later data transfer.

UG Ara

PROFESSIONALS
uc,

Character String segments, and Logical segments indicating Class, Instance, Attribute, and Member, are
the most common selectors within Application Paths, as the target path of a CIP Request within a device.

Some of these segments are not commonly used “on the wire”, but instead direct fine-grained selection
within a larger data block that is actually transferred.

8.3.1 Numeric Logical and Extended Logical Segments

Multiple keywords with similar syntax. Syntax is “keyword n” and “n” is an unsigned integer that fits
within the segment type’s max size. Encoding is always normalized to the smallest format needed for
the value. Decoding tolerates non-normalized values. Details are in CIP Volume 1 §C-1.4.2. Keywords
are:

Type Codes Secondary Type |Keyword Abbreviated KW |Size

0x20, 0x21 class cls 16-bit
0x24, 0x25, 0x26 instance inst 32-bit
0x28, 0x29, 0x2a member memb 32-bit
0x2c, 0Ox2d, Ox2e conxpoint cxpt 32-bit
0x30, 0x31, 0x32 attribute attr 16-bit
0x38 service svC 8-bit

0x3c, 0x3d, 0x3e |0x01 subscript sub 32-bit
0x3c, 0x3d, Ox3e |0x03 bit 32-bit
0x3c, 0x3d, 0x3e|0x05 membernumber membnum 32-bit
0x3c, 0x3d, Ox3e |0x06 memberhandle membhand 32-bit

Several keywords are provided as macros to produce the most common combinations of class and

instance logica

| segments, as follows:

Macro Alternate Macro Expands To

identity class 1 instance 1
msgrouter class 2 instance 1
cxmgr class 6 instance 1
assembly N assy N class 4 instance N
connection N conx N class 5 instance N
parameter N param N class 15 instance N
tag N tagpath class 0x6b instance N
template N tpl N class Ox6c instance N

When converting a complete application path to string form, these macros will be inserted where
applicable to achieve the shortest form.

8.3.2 Indirect Extended Logical Segments

Keywords “subscript” and “bit” shown above can also parse a tagpath or token string argument instead
of a numeric value. In this case, type code 0x3e is not allowed, the secondary types will be 0x02 and
0x04, respectively, and the encoded number is the number of words to follow containing the padded
EPath. The nested path is always in padded form, even if embedded within a packed EPath. As above,
details are in CIP Volume 1 §C-1.4.2. If the nested path is not a simple string, enclose it in quotation
marks.

Page 45 of 67

September 23, 2024

Ignition EtherNet/IP Module User Manual
EtherNet/IP Communications Suite

OOATGHL

ESSIONALS
uc,

8.3.3 Symbol and Data Selection Segments

Character selectors and data selectors carry a variable-length payload with the selection information.

Type Codes |Syntax Functionality

0x60-0x7f symbol s Character string selector with alternate charsets,
length 1-31 characters (not bytes).

0x80 data d Embedded data selector with single 16-bit value.

0x80 data [d e...] Embedded data selector with up to 255 16-bit
values.

0x91 ansi s Character string selector with IS0-8859-1 charset,
max length 255 bytes. (0Often used implicitly with
UTF-8.)

The preferred format for character string selectors in most applications is type code 0x91. (Many
applications do not support type codes 0x60-0x7f at all.)

The embedded data selector is most commonly used to supply configuration data for an I/O connection
within a Forward Open request. In that usage, the length is limited to 200 16-bit values.

8.3.4 Special Symbol Segments

This module uses a number of special symbols via the OPC interface. They all begin with the “@”
character. For most, these are included as a trailing symbol in a tagpath (delimited with a period if
necessary, as usual), or using the ansi token, but will not be passed on the wire to a target device—they
are stripped off and interpreted by the driver. The following special symbols are supported:

Syntax Functionality

@barrier Solo tagpath symbol that yields a timestamp when
the entire batch of reads that it accompanies
completes. Not writable.

@debug These two symbols may be placed anywhere in an
@trace application path. They are stripped out before
optimization, but their presence is noted, and
causes corresponding loggers to switch to INFO
level wherever the driver handles the item.

@cache Prefix that indicates the following element path
should be read entirely from the OPC layer’s cache.
Applies only to probed class/instance/attribute
values acquired during startup probing. Not
writable.

@string When applied to an array of 8-bit values, reads the
contents as a null-terminated string or writes a
null-padded string. Uses the CIP default charset,
I1S0-8859-1.

@utf8 When applied to an array of 8-bit values, reads the
contents as a null-terminated string or writes a
null-padded string. Uses the UTF-8 charset.

@utfle When applied to an array of 16-bit values, reads
the contents as a null-terminated string or writes
a null-padded string. Uses the UTF-16 charset.

@msec When applied to a 64-bit integer type, reads the
value as UTC microseconds and returns an OPC
DateTime, or writes UTC microseconds from an OPC
DateTime.

@nsec When applied to a 64-bit integer type, interprets
the value as UTC nanoseconds and returns an OPC
DateTime, or writes UTC nanoseconds from an OPC
DateTime.

Page 46 of 67

September 23, 2024

Ignition EtherNet/IP Module User Manual
EtherNet/IP Communications Suite

ATORATION

PROFESSIONALS
uc,

8.3.5 Keyence Application Paths

When a target device is a Keyence KV PLC, addresses within its global memory use more special
symbols, combining the device memory mnemonic with the numeric or hex address. They all begin with
the “@” character. (Internally, these are split into a mnemonic symbol segment plus a binary member

segment.) The follow Keyence memory device application paths are supported:

Syntax Functionality

@Rnbb Boolean relays, auxiliarly relays, latch relays,
@MRnbb and control relays, respectively. For each, ‘n’ is
@LRnbb the zero-based decimal channel number, and ‘bb’ is
@CRnbb the decimal bit (00-15) within the channel.

@Bx Boolean link relays and work relays, respectively.
@VBx In each pattern, ‘x’ is the zero-based hexadecimal

linear bit address.

@Mn or @n, @Mn(t) or @n(t)
@EMn or @EMn(t)
@FMn or @FMn(t)
@ZFn or @ZFn(t)
@TMn or @TMn(t)
@Cmn or @CMn(t)
@/mn or @VMn(t)

Data memory, extended data memory, paged file
memory, unpaged file memory, temporary data
memory, control memory, and work memory,
respectively. For each, ‘n’ is the zero-based
decimal linear address, and ‘t’ is an optional

type override.

When ‘t’ is absent, 16-bit INT is used. ‘t’' may
be UINT, DINT, UDINT, REAL, LINT, ULINT, or LREAL.
Consecutive addresses, in little-endian order, are
used with the larger data types. The parentheses
are required if ‘t’ is present.

@wx or @wx(t)

Link memory. ‘x’ is the zero-based hexadecimal
linear address. ‘t’' is an optional type override,
as described for data memories.

@Tn.DN, @Tn.ACC, or @Tn.PRE

@Cn.DN, @Cn.ACC, or @Cn.PRE
@CTHn.DN, @CTHn.ACC, or @CTHn.PRE
@CTCn.DN, @CTCn.ACC, or @CTCn.PREZn

Timers, Counters, High-Speed Counters, and High-
Speed Counter Comparators, respectively. These
must always be specified with one of the given
suffixes (Done, Accumulator, or Preset).

The CC, CS, TC, and TS mnemonics for simplified
access to accumulators and presets are not

supported.

@Zn Index registers and digital trimmers,

@ATn respectively. These are always unsigned 32-bit
values.

8.4 Data Definition Segments

Path segments in this group do not perform object or data element selection, but define the format of
data blocks that appear in CIP request or reply payloads, or the data areas of implicit messaging packets.
In essence, they provide the foundation of arbitrary encoders and decoders that can be constructed at
runtime, instead of hard-coded into base software.

When the Client Driver probes a PLC, it translates the PLC probe results into byte-for-byte equivalent
codecs using the tools in this group. The Client Driver also reads XML that declares the data types for
many of the attributes within standard object models from the CIP Specification. This permits proper
encoding/decoding of those objects’ attributes.

Similarly, when the Host Driver loads XML to define its emulated types and tags and assemblies, it sets
up the tools in this group to control the encoding and decoding of packet payloads.

8.4.1 Elementary Data Segments

Elementary data definition segments are encoded with a single byte, and represent a single, indivisible
unit of data. The data represented by these segments is transferred in little-endian format unless
otherwise noted. Elementary types include the basic numeric types and some complex items that are
expected to be treated as single values. The token keywords take no arguments.

Page 47 of 67

September 23, 2024 [UTORBGN
Ignition EtherNet/IP Module User Manual e
EtherNet/IP Communications Suite

Omron data type details are per Software User’s Manual W501 §6-3-5 and per EtherNet/IP Port User’s
Manual W506 §8-7-1. CIP data type details are per Volume 1 §C-2.1.1 and §C-6.1. Note that CIP

Volume 1 §C-2.1.2 specifies ISO 8859-1 for strings built from single bytes (except where the character
set 1s explicit in the payload of a Stringl value), but this module defaults to UTF-8 instead to conform to
typical usage in real-world applications.

Type Code |Keyword Abbreviated Data Size |[Data Format and functionality

0xb4 bcd2 16-bit Omron BCD. Code 0x04 on the wire.

0xb5 bcd4 32-bit Omron BCD. Code 0x05 on the wire.

0xb6 bcd8 64-bit Omron BCD. Code 0x06 on the wire.

0xb8 omdatens 64-bit Omron epoch nanoseconds, but time of day ignored.
Code 0x08 on the wire.

0xb9 omtimens 64-bit Omron signed nanoseconds duration. Code 0x09 on the
wire.

Oxba omron_date_and_time |omdt, omrondt 64-bit Omron epoch nanoseconds. Code Ox0a on the wire.

0xbb omron_time of day omtod, omrontod |64-bit Omron nanoseconds since midnight. Code 0x0b on the
wire.

0xcO utime 64-bit CIP epoch microseconds.

0xcl bool 8-bit CIP boolean, 0 or 1 only. Arrays of bool pack into
one or more bytes.

0xc2 sint 8-bit CIP signed short integer.

0xc3 int 16-bit CIP signed integer.

0xc4 dint 32-bit CIP signed double integer.

0xc5 lint 64-bit CIP signed long integer.

0xc6 usint 8-bit CIP unsigned short integer.

0xc7 uint 16-bit CIP unsigned integer.

0xc8 udint 32-bit CIP unsigned double integer.

0xc9 ulint 64-bit CIP unsigned long integer.

Oxca real 32-bit CIP floating point, IEEE 754.

Oxcb lreal 64-bit CIP floating point, IEEE 754.

Oxcc stime 64-bit CIP epoch nanoseconds.

oxcd date 16-bit CIP unsigned days since 1972-01-01.

Oxce time_of_day tod 32-bit CIP milliseconds since midnight.

Oxcf date _and_time dt 48-bit CIP milliseconds since 1972-01-01 (concatenated tod
and date elements).

0xdo string variable |CIP string of bytes, with a 16-bit length prefix.

0xd1 byte 8-bit CIP bit string.

0xd2 word 16-bit CIP bit string.

0xd3 dword 32-bit CIP bit string.

0xd4 lword 64-bit CIP bit string.

0xd5 string2 varies CIP string of words, with a 16-bit length prefix.

0xd6 ftime 32-bit CIP microseconds signed duration.

0xd7 ltime 64-bit CIP microseconds signed duration.

0xd8 itime 16-bit CIP milliseconds signed duration.

Oxda short string shortstring variable |CIP string of bytes, with an 8-bit length prefix.

oxdb time 32-bit CIP milliseconds signed duration.

0Oxdc epath variable |CIP encoded path. Packed form. Converted to and
from string format on the OPC side.

0xdd engunit 16-bit CIP engineering unit per CIP Volume 1 Appendix D.

Oxde stringi variable |CIP internationalized string, multiple languages.

oxdf ntime 64-bit CIP nanoseconds signed duration.

8.4.2 Predefined Structure Segments

The CIP specification’s “Defined Constructed Data Types” use type code 0xb0, followed by a 16-bit
integer subtype. Details are per CIP Volume 1 §C-2.1.5 and §C-6.2.3. Note that the odometer types are
not particularly useful when 64-bit integers are available, as a 64-bit integer has a greater range of
values. This module converts to/from 64-bit integers on the OPC side.

Page 48 of 67

September 23, 2024

Ignition EtherNet/IP Module User Manual
EtherNet/IP Communications Suite

ATORATION

PROFESSIONALS
uc,

This module repurposes four reserved subtypes as private extensions in order to implement Omron’s
boolean type, similar boolean types extrapolated to larger underlying storage, and to make it possible to
dynamically define decoders for all of the service payloads for all object attributes in the CIP object
model. This requires distinguishing between packed and padded EPaths, and enforcing word alignment
for some services.

SubType Keyword Abbreviated Data Size

0x01 signed_odometer sgnodo 10 bytes |CIP extra-long signed integer, composed of five 16-
bit signed integers, each constrained to -999=x=<999.

0x02 odometer odo 10 bytes |CIP extra-long unsigned integer, composed of five
16-bit integers, each constrained to 0=x<999.

0x03 eth _mac_addr ethmac 6 bytes CIP ethernet MAC address storage, in network order.

0xc7 booll6 16-bit Omron native boolean. Functionally identical to
bool, but uses WORD instead of BYTE for storage and
transfer.

0xc8 bool32 32-bit As above, but with DWORD storage and transfer.

0xc9 bool64 64-bit As above, but with LWORD storage and transfer.

Oxdc padepath varies CIP encoded path. Padded form. Converted to and from
string format on the OPC side.

8.4.3 Array Prefix Segments

The CIP Specification defines an abbreviated format for array definitions. This is unimplemented in this
module, as it appears to have no real-world use. This module implements formal array definition
segments as a prefix to other data definition segments, up to three levels.

Type code 0xa3 is implemented per the specification. However, as a private extension it accepts an
optional following member segment before the actual nested data definition segment. When present,
this member segment declares the starting subscript value, to support non-zero-based arrays.

Type code Oxac, reserved in the specification, is repurposed in this module as a private extension to
encode an indirect array length, similar to the indirect subscript and indirect bit index selector segments.
Where type code 0xa3 is immediately followed by a constant 32-bit dimension length, type code Oxac is
followed by a byte indicating the number of bytes following in a packed EPath. It is then followed by a
data definition segment like type code Oxa3. It does not support non-zero initial subscripts.

This implementation does not accept type code Oxac in any position other than the outermost dimension
of a definition.

While the encoded form of these segments use prefixes, the token string forms use square bracket
suffixes, similar to the appearance of tag path array subscripts. Which array type code to use is implied
by the contents of the square brackets, as follows:

Type Code(s) Syntax Functionality

0xa3, ... typel[n] 1D array of length n.

0xa3,0xa3, ... typel[m,n] 2D array of shape m x n.

Oxa3,0x28, ... type[n..m] 1D array with subscripts n through m inclusive (lenth m-n+1)
0xa3,0x28,0xa3,0x28,... |type[n..m,i..j] 2D array with subscripts n through m and i through j.

Oxac, ... type[tagpath] 1D variable length array

Oxac,0xa3, ... type[tagpath,n] 2D variable length array, with inner dimension length n.
0xac, ... type[*] 1D variable length array, autosized to buffer.

Oxac,0xa3, ... type[*,n] 2D autosized array, with inner dimension length n.

In the above table, if “type” contains multiple keywords, enclose in parentheses.

Note that square brackets contain array subscripts in tagpaths, while they define array dimensions in

token strings.

Page 49 of 67

September 23, 2024 [UTORBGN
Ignition EtherNet/IP Module User Manual e
EtherNet/IP Communications Suite

8.4.4 Structure Definition Segments

The CIP Specification has three type codes for use identifying/defining arbitrary structure types. Type
code 0xa0, the abbreviated form, carries a 16-bit handle that is intended to uniquely identify a data type,
by computing a CRC value over its definition. Type code Oxa2, the formal definition, is followed by a
byte length of a nested list of data definition segments. The CIP spec includes a CRC algorithm, defined
to use the formal definition as its source material.

The specification’s third type code, 0xa8, the formal handle definition, is not implemented in this
module.

With a formal definition, the member definitions are in packed form, even if the formal definition itself
is in a padded context.

This module repurposes eight type codes as private extensions to support:
* Identifying a structure by name instead of 16-bit handle,
* Allowing longer formal definitions via a 16-bit length,
* Optional member names, via ansi or symbol segments preceding the member data type,
* and distinct member alignment options, for generic and Omron CJ and for Logix-style rules.

The token string forms are enclosed in parentheses if there is any ambiguity. The following
combinations are supported:

Type Code |Syntax Functionality

0xa0d struct n Structured type identified by handle/CRC. “n” must decode to an
integer.

Oxae s Structured type identified by name, where name “s” is not a token
keyword and is unambiguously an identifier.

Oxae struct s Structured type identified by name, where “s” is arbitrary. Use

when a structure name matches a primitive type or another keyword,
or has punctuation. Use quotes if spaces or punctuation would
make it ambiguous.

0xa2 (type typeln]...) Structured type with anonymous members, up to 255 encoded bytes,
single byte alignment.

0xad (type mname=type[n]...) Structured type with optionally named members, up to 64k encoded
bytes, single byte alignment.

0xa5 (align2 type mname=type[n]...) Structured type like 0xa4, but with 16-bit maximum alignment.

0xab (align4 type mname=type[n]...) Structured type like 0xa4, but with 32-bit maximum alignment.

Oxa7 (align8 type mname=type[n]...) Structured type like 0xa4, but with 64-bit maximum alignment.

0xa9 (align2c type mname=type[n]...) |Structured type like 0xa4, but with 16-bit Omron CJ forced
alignment.

Oxaa (align4l type mname=type[n]...) |Structured type like 0xa4, but with 32-bit Logix-style alignment.

Oxab (align81l type mname=type[n]...) |Structured type like 0xa4, but with 64-bit Logix-style alignment.

When parsing, consecutive data definition segments without other delimiters will be wrapped in a single
formal structure definition, as if wrapped in parentheses.

With type codes Oxa5 through Oxa7, the data alignment of each member is the lesser of the max
alignment and that member’s native data alignment. A nested structure’s “native” data alignment is its
declared alignment. Arrays are aligned according to their element’s alignment.

With type code 0xa9, all members are force-aligned to 16-bit boundaries. (Omron CJ format).

With type codes Oxaa and Oxab, the native data alignment of members is only used for non-array
elementary types. All other members use the structure’s declared alignment. This “selective forced
alignment” is the normal behavior of Logix processors.

Application notes:

* The keyword “align1” is optional for type codes 0xa2 or Oxa4. It is omitted when converting to
string format.

Page 50 of 67

September 23, 2024 [UTORBGN
Ignition EtherNet/IP Module User Manual e
EtherNet/IP Communications Suite

» Logix processors prior to firmware v27 used 32-bit forced data alignment for all arrays and
nested structures. Booleans are not permitted by themselves in Logix processors—they must be
“hosted” in another member. Rockwell’s software constructs hidden 8-bit members to host a
named boolean, and packs consecutive named booleans together eight at a time.

* Logix processors from v27 onward use 64-bit forced data alignment for arrays and nested
structures when any 64-bit type is a member, at any nesting depth.

* Omron’s NJ structure types use the natural alignment of their members, up to 64-bit, then pad
the structure to the largest alignment of it the members. Which then becomes the structure’s
natural alignment when nesting in other structures. Named booleans in NJ structures occupy
and align to a complete 16-bit word of their own.

* Omron’s CJ structure types use only 16-bit alignment, even for bytes and strings. Consecutive
named booleans are packed into 16-bit words together, and in this library, must be hosted in a
16-bit word.

All of the aligned structures’ data will be padded at the end to the structure’s declared alignment.

8.4.5 Indirect Reference Segments

Structures may contain named members that actually refer to data within another member of the same
structure. Most commonly, this is used for boolean values that are “hosted” in a member of an integral
or bitstring type. More generally, an alias may be used to point arbitrary data types within another
member that is a nested structure type. An alias may also be a tag itself, pointing to arbitrary data within
another tag. The following encodings are available:
Type Code |Syntax Alternate Syntax |Functionality

Oxad hbit h.b |hostedby h.b Boolean in host member “h” bit number “b”. The bit number may be 0-255
and is encoded in the following byte. The host member is encoded
following that, as either an ansi symbol segment, a member segment, or
a member number segment.

Oxaf aliasof tagpath Any arbitrary data type determined by following the given tagpath. When
present within a structure definition, the first element of the given
tagpath must be a symbol or member segment that identifies a peer
member of the structure, which must be a nested structure and must
contain the balance of the tagpath.

When used as a tag definition, its tagpath options are implementation
defined.

8.5 Alternate Syntax

The string parser for element paths is shared for node addresses, route paths, and application paths.
While most user interfaces display element paths using the parenthesized tokenpath & unparenthesized
tagpath format described above, I/O module route and application paths in the Host Driver’s Scanner
default to bare token paths. All user interfaces will use implied parentheses on a bare token path as
needed, and will attempt to decode hexadecimal “Padded Epaths” (nothing but pairs of hex digits and
optional whitespace between pairs). The latter is particularly useful when copying application paths
from EDS files.

8.6 Testing Element Paths

The parsing logic described above is available in Jython scripting contexts as the system.cip.Path. The
static and instance methods available on Path are documented for the underlying library’s CipPath Class.
Similarly, decoding logic from the PathSegment Class is exposed as system.cip.Segment.

Use this example in the designer’s script console to get started:

Page 51 of 67

https://www.automation-pros.com/enip1_v2/html/com/automation_pros/odva/cip/path/CipPath.html
https://www.automation-pros.com/enip1_v2/html/com/automation_pros/odva/cip/path/CipPath.html
https://www.automation-pros.com/enip1_v2/html/com/automation_pros/odva/cip/path/CipPath.html

September 23, 2024

Ignition EtherNet/IP Module User Manual
EtherNet/IP Communications Suite

RUTCHENO

PROFESSIONALS
e

from system.cip import Path

def doPath (tagpath) :
p = Path.parse(tagpath)
print "Normalized:", p
for i, seg in enumerate (p):
print "%4d: %s" % (i, seq)
print "Packed Encoding:", p.hexString(False)
print "Padded Encoding:", p.hexString(True)

doPath("class 1 instance 1 attribute 1")

doPath ("someTag.someMember [2].15")

doPath ("arrayTag[2,3,4].someMbr.2")

ldoPath (" (class 0x305 instance 0x114 attribute 0x64 A=DINT B=INT[3])B[0]"™)

Figure 25: Path Segment Parsing Test Script

The script above yields this:

>>>

Normalized: identity attr 1
0: cls 1
1: inst 1
2: attr 1

Packed Encoding: 2001 2401 3001
Padded Encoding: 2001 2401 3001
Normalized: someTag.someMember[2].15

0: ansi 'someTag'

1: ansi 'someMember'

2: memb 2

3: bit 15
Packed Encoding: 9107736£6d65546167 910a736£6d654d656d626572 2802 3c030f
Padded Encoding: 9107736f6d6554616700 910a736£6d654d656d626572 2802 3c030£00
Normalized: arrayTag[2,3,4].someMbr.2

0: ansi 'arrayTag'
memb 2
memb 3
memb 4
: ansi 'someMbr'

5: bit 2
Packed Encoding: 91086172726179546167 2802 2803 2804 9107736£6d4654d6272 3c0302
Padded Encoding: 91086172726179546167 2802 2803 2804 9107736f6d654d627200 3c030200
Normalized: (cls 773 inst 276 attr 100 A=DINT B=INT[3])BI[0]

R

0: cls 773

1: inst 276

2: attr 100

3: A=DINT B=INT[3]
4: ansi 'B'

5: memb 0

Packed Encoding: 210503 251401 3064 a40d00910141c4910142a303000000c3 910142 2800
Padded Encoding: 21000503 25001401 3064 a40d00910141c4910142a303000000c3 91014200 2800
>>>

Figure 26: Path Segment Parsing Test Output

Page 52 of 67

September 23, 2024 [UTORBGN
Ignition EtherNet/IP Module User Manual e
EtherNet/IP Communications Suite

9 Interpreting EDS Files

The example I/O Module Scanner configured within a Host Driver in Figure 16 through Figure 18 was
created with a real 1734-OE2V Point I/O™ module and the EDS file: 0001007300380300.eds. Note the
‘00’ in place of the minor version. Electronic Data Sheets are organized into sections marked by a
section name in square brackets, followed by lines containing “key=value;” pairs. The “value” part may
be composed of multiple comma-separated fields and may span multiple lines. Indentation of keys and
values is optional but typical, along with extra whitespace. Comments are marked with dollar signs, and
may appear anywhere outside quoted strings, even in between various fields of a value. Rockwell’s
guidance to hardware developers on how to produce EDS files provides additional insight on how to
interpret their content.

9.1 Identity

The electronic keying information is obtained from the | ™<= =~

[Device] section, as shown in the excerpt in Figure 27. ponone _ [jockwett Autonation/AtlenzBradiey’;
This is required to be near the top of the file. In this Prodonde = ser T tenatien Miscellaneons®s
section, each key has a single numeric or string value. Vorney -)

The public parameters of the device will be described %Z?fj;#iziéé?vzgt Fvae Anatog voltace Outeatty
in the [Param] section. These parameters do not have |Figure 27: EDS Device Section

any direct impact on the configuration described
above, but will describe the values needed in the actual configuration tag and output tag, and the values
to expect in the input tag.

9.2 Connection Options

Other than the route path, the information needed to complete the Connection Details scanner
configuration is found in the [Connection Manager] section of an EDS file. An excerpt from the OE2V
EDS file is shown in Figure 28, describing the Exclusive Owner connection to the OE2V.

The ﬁrSt ﬁeld Ofa “ConnectlonN” key’s [ConneCtiogo}:izigigi7 = $ Exclusive Owner (Direct to Module)
value is its Trigger & transport support L oo e o
word. It should be broken down by byte to e e o
. 0x04030002, § tri &t t
detGMIne the transport Class and data 0x44240405, $ pgigg?;ultiiizipzrpriority & realtime format
production triggers the module uses. The semiosl oo qoramitlGeeeribrion
high byte must be one of the following oemizs, § config bart)
. . "Di t Exclusive Ow ", 8 ti
values to be supported by this driver: "Direct Exolusive Owner Conmection - Output data controls the state
. (analog level) of each of the outputs. Input data contains
() OXOI = llsten Only status of each of the outputs.", $ Help string
e (0x02= input Ol’lly Figure 28: Connection Options

¢ 0x04 = exclusive owner
¢ 0x08 = redundant owner

The second byte, little-endian bits 16 through 23, indicates which trigger types are supported. Bit 16 =
1, indicating “Cyclic” triggering, must be turned on. Support for Change-of-State triggering, indicated
by bit 17 = 1, is planned.

The remaining two bytes, bits 0 through 15, indicate which transport classes are supported. Bit 1, for
Transport Class 1, must be turned on.

Page 53 of 67

http://www.rockwellautomation.com/resources/downloads/rockwellautomation/pdf/sales-partners/technology-licensing/Logix_EDS_AOP_Guidelines.pdf

September 23, 2024

Ignition EtherNet/IP Module User Manual
EtherNet/IP Communications Suite

ATORATION

PROFESSIONALS
uc,

The next field is the connection parameters support word, and must also be broken down. The high byte

indicates the packet priorities supported in each direction.

At least bits 26 and 30 must be turned on,

indicating support for scheduled priority in both directions.

The next byte of the connection parameters indicates the support for multicast versus unicast in each
direction. Bits 21 & 22 are the input direction’s multicast and unicast support, respectively. Bits 17 &

18 are the output direction’s multicast and unicast support.

If both bits are turned on for a given

direction, you may choose either packet type for that direction. The 1734-0E2vV module only supports

multicast input and unicast output.

The next byte indicates the format used in the packet for transferring run/program mode to or from the
target device. The high nibble, bits 12-14, indicate the input RT format, and the low nibble, bits 8-10,
indicate the output RT format. Values supported by this driver are:

* 0x0 =Modeless

* 0x1 = Zero length idle

e 0x3 = Heartbeat

* 0x4 = 32-bit Run/idle header

Note that when the 32-bit run/idle header is specified, the actual data payload has four extra bytes.

The final byte of the connection parameters support word must have bits 0 and 2 turned on, indicating

support for fixed payload sizes in both directions.

9.3 Connection Data

Completing the Connection Data section of the scanner
configuration uses the balance of the “ConnectionN” key

[Assembly]

Asseml02 = "Data","",
,0x0000,,,
16,Paramd’,
16,Param48;

combined with key=value data from the [Assembly] section hssemiz6 = & 09T (owiput data)

of the EDS file.

"Ouput Data Assembly",
, $ Path, $ Length in bytes
, $ descriptor

The next three fields of the “ConnectionN” key specify the ;. $ reserved

output RPI (in microseconds), output size (in bytes), and
output data format for the connection. For the 1734-0E2v,

,Asseml02; $ Assembly sent to module

Figure 29: Scanner Output Assemblies

the required RPI is blank, meaning no restriction. The size is also blank, meaning to use the size of the
format argument. The format indicates the single parameter or the assembly of parameters that define

the content of the output buffer. For the 1734-0E2v, that is
which in turn references assembly spec #102, as shown in

a reference to assembly specification #126,
Figure 29. The critical information is that the

output buffer is a total of 32 bits long, 16 for Param47, and 16 for Param48. The imported L5X for this
module tells us that these are ChOData and Ch1Data, respectively. Since the size of the assembly
matches the size of the tag, no “Output Bytes” override is needed.

Similarly, the next three fields specify the input RPI (in
microseconds), input size (in bytes), and input data
format for the connection. For the 1734-0E2v, the input
format refers to assembly spec #127, which defines 32
bits of fault information, then refers to assembly #101.
Assembly spec #101 defines two bytes of channel status
information. As shown in Figure 30, total size of the
input buffer is six (bytes). The input tag imported with

[Assembly]

Asseml01l = "Status","",
rrre
8,Paramd9,
8, Param50;

Asseml27 = $ T20 (input data)
"Input Data Assembly"
, $ Path
, $ Length in bytes
, $ descriptor

, $ reserved

32,, $ Fault bits
,Asseml01l; $ Assembly passed from module

Figure 30: Scanner Input Assemblies

the L5X is padded to eight bytes, so an “Input Bytes” override is needed.

The next four fields specify the size and format of the
two possible configuration data blocks that would be

Page 54 of 6

[Assembly]
Asseml24 = $ Private config in Forward Open, Module
"3rd Party Private Assembly"
, $ Path
, $ Length in bytes
, $ descriptor
, $ reserved
16,Paraml01l, $ configuration revision
(only valid value is 1)
16,; $ reserved - zeros

Figure 31: Scanner Configuration Assemblies

September 23, 2024 [UTORBGN
Ignition EtherNet/IP Module User Manual e
EtherNet/IP Communications Suite

included in a Forward Open request message. The first data block is used with chassis-based modules,
and is consumed by the chassis. The second data block is the configuration for the module itself. An
L5X import general omits the first data block. For the 1734-0E2v, the formats are given by assembly
spec #124 and spec #123, respectively. The two values required by assembly spec #124 are constants,
independent of the module configuration. These are placed at the end of the application path, as shown
in Figure 18.

The final field in a “ConnectionN” value is the encoded form of the application path, not including the
static config data segment. This should be entered into the Application setting by itself (to decode it),
then edited as needed.

9.4 Assembly Structures

Unlike actual user-defined data types in Logix controllers, the I/O and configuration assemblies of an
imported I/O module can be badly scrambled by missing information. An L5X export file may not
provide all needed details to create the data types for the module. Rockwell’s processors and 1/0
modules hide some data bytes and words from the user, and often skip bits in structures. So the data
type “imported” for a module can be substantially shorter than the module expects, and named bits may
not be in the right place. After an XML import, the imported data types (input, output, and
configuration) should be compared with the assembly definitions in the EDS file to ensure the byte
placement and bit definitions match.

Page 55 of 67

September 23, 2024 [UTORBGN
Ignition EtherNet/IP Module User Manual e
EtherNet/IP Communications Suite

10 Scripting Features and Functions

Several functions are registered under system.cip.* in Ignition’s Script Manager, along with a variety of
internal classes that would otherwise be hidden by Ignition’s isolating classloaders. Among the internal
classes exposed are a nearly-complete set of data types from the CIP Specification, not just the handful
of types supported by the Logix tag and data type emulation described in Configuration. These data
types are used directly to help encode and decode CIP message/reply payloads, and can be wrapped for
efficient access to their content in jython.

10.1 Custom Jython Code Modules

Each device on the module’s virtual backplane has ~|Figure 32: system.cip.getDevice(name=None, slot=-1. id=0)

an associated JythOl’l code module. in Gateway Retrieves a Jython module object with the specified device’s named Logix

. R > . Tags as module-level globals, along with any other functions, classes, and
Scope. This code module’s content is saved in and variables from the XML configuration. Access to these variables, including

initialized from the conﬁguration XML ﬁ]e, and can |assignment, is diverted to a Jython wrapper for the tag’s datatype.

contain any valid jython code. Take care to Argument |Data Type Description
properly XML-escape jython punctuation when name String OPC Server Device Name
diti XML directl ticularlv th ter-th slot Integer |Virtual Backplane Slot #
cdiiung 'II'CC Yy, particularly tn€ greatcr-than id Long OPC Server Device ID
and less-than signs. Keyword-style invocation is allowed. If multiple criteria match, Name takes

precedence over Slot, and Slot takes precedence over ID. ‘None’ is returned
if no device matches.

Like other script modules, the code is executed

once upon device startup, and again when any
shared script module is edited. Any functions, classes, and module global variables declared in the
jython code persist until the device is shut down. These code modules have a special module dictionary
that automatically includes the Logix-style tags as module-level global variables, so long as the tag’s
name is a valid python name (no colon). This special dictionary, accessible via python’s standard
globals () function, also exposes a subject property pointing at the virtual device.

Gateway event script

These module-level globals for the Logix-style tags wrap |[,5*isy =rent *obl L ypevicen)

the raw da’ta in SpeCial Jython data types tha’t allOW Loglx- # Emulate ladder logic, like the follow Logix rung:
like syntax. Arrays become jython “jarray” lists, FXIC(MyTag (3] - Trens. 2) OTE (OtherTag[0].0)
structured types become objects with named properties, |5, s 0T o e e ey e 2

Bits can also be indirect, but leave out the dot

and the various integer types allow bit-wise access. MOSt |[1c otnceragio) (0] = plotyragis] . ooz 2]
importantly, use of these properties on the right hand side [f7gure 33: Logix Tags in Gateway Scripts

of a python expression retrieves the live value from the virtual module’s tag, and assignment to these
properties (left hand side) writes back into the virtual module’s tag.

These jython wrappers for the device’s tag data each also expose a subject property pointing at the tag
object. This can be uses to inspect other attributes of the tag.

The syntax of these jython wrappers is intended to be as similar as practical to the syntax used within an
Allen-Bradley Logix processor’s code. The only major deviation is the treatment of bit access, both
indirect and as constant bit numbers. See the example in Figure 33. Note that when assigning to one of
these tag names within a function or class method, without any array subscript or dot-element, python’s
scope rules will create a function-local variable instead of assigning to the CIP data. Use python’s
global keyword at the beginning of the function to avoid this behavior.

10.2 Jython Data Events

Tags and Assemblies may provide a function name that will be called when a connection is made, Fresh
data is written, any data is consumed, and/or data will be transmitted. Only ordinary functions defined
within the virtual device’s code module may receive these events, though that event function may call a
function defined elsewhere in gateway scope, like a shared script module.

Page 56 of 67

September 23, 2024 [UTORBGN
Ignition EtherNet/IP Module User Manual e
EtherNet/IP Communications Suite

These events pass a single event Figure 34: CipPyEvent
Ob.] ect to the handler ful’lCthl’l, Constructed by data objects within virtual devices when data traffic is occurring or connection
detailed in Figure 34. status is changing.
The subject can be examined to Property Data Type Description _ ,
det ine th £ t stamp Date Millisecond-resolution timestamp when
etermine the true source of an the event occurred.

event when a handler function is constructed |long Nanosecond-resolution timestamp (from
shared by multiple objects. If the EKZEZQ'”a”OTlme) when the event was
event logic needs to write back to started long Nanosecond-resolution timestamp when the
the subject, consider usinga event execution started. If the.delta

. . between constructed and started is
dedicated handler and write to the greater than the RPI involved, the event
module global that corresponds to script should abort early.
the event source subject CipObject The connectable data object that created

. the event.
Each event contains a snapshot of detail Boolean or For consume events, a boolean indicating
the data in the subject from the time CipPyCxEvent |a “fresh” packet, one with a changed 16-
bit CIP serial number in the packet
of the event, before the event is Reade;-d biect with details of
. nested object wi etails o

queued to the thread pool. Use this connection status changes for connection
snapshot for any historical logglng handler events. None otherwise.

. . . snapshot PyObject A wrapped copy of the data from the time
operations to 2}V01d losmg data. the event occurred. Use this for data
Event processing can be delayed for storage instead of accessing the live

Y bject
a variety of reasons. SubJECt.

Figure 35: CipPyCxEvent

The handler property contains the
R propetty . Constructed by data objects within virtual devices when connection status is changing during
string name of the handler function. |normal operation. Disconnect and Unsubscribed events may be dropped during virtual device

Used by the thread pOOl but shutdown or reconfiguration.
available to the callee. Property |Data Type Description
. . type String “connect”, “connectFail”, “disconnect”,
The optional detail property has “subscribe”, or “unsubscribe”.
additional information for object varies '{ge ;AppOwner or App%oniumﬁr thgt is
. . . is)connecting or (un)subscribing,
conne'ctlon actions on the subject. respectively.
See Figure 35. params CxParams Network Connection Parameters requested
. when connecting or subscribing. None
When the CipPyEvent logger level otherwise. As described in the CIP
is set to Trace, every event Specification under Connection Manager
d will h ti Object Specific Service Parameters.
processe w1 } ave ap cxecution dirtrigcls|byte The combined direction, trigger, and
time report, with the time spent transport class code requested. As

described in the CIP Specification under

creating the snapshot and the time Connection Object Instances, Attribute

spent waiting in the background #3.
queue broken out. e Exception Present on failure reports. None
otherwise.

The execution time reports can also
be generated for specific subjects by setting the subject’s “Event Timing Debug” attribute to True, and
setting the CipPyEvent logger level to Debug. Note that the event timing debug setting is not saved in
the virtual device’s XML, so will always be false at device or subject startup.

Warning: These module events use unbounded queues and deliver events one at a time per source
object. It is vital that execution time within the event average less than the interval between events, or
events will occupy substantial memory and eventually crash the gateway’s JVM. Event code should
compute the nanosecond delta between .constructed and .started to see how long the event waited in
queue. Old events should be discarded. Very high-speed operations should not perform time-consuming
actions like SQL queries or network messaging within the event. Instead, construct a limited-size queue

Page 57 of 67

September 23, 2024 [UTORBGN
Ignition EtherNet/IP Module User Manual e
EtherNet/IP Communications Suite

for the data to process, then process in bulk in a separate gateway event. Placing jython tuples into
Java’s LinkedBlockingQueue is recommended. Construct such queues with a fixed capacity.

Avoid using event handlers to execute state machines or perform handshaking that modifies I/O buffers
for peer devices, especially if queuing. Instead, use a single gateway timer event at the appropriate pace
(faster than RPI) to perform all such logic, as if it were a periodic task in a PLC.

10.3 CIP Messaging Access

A Variety of CIP Ob_] ects and Figure 36: system.cip.getMsgPort(name=None, slot=-1, id=0, port=1)

services are not available as pythOl’l Retrieves a local unconnected messaging port (in gateway) or messaging proxy (in client and
data types and no direct access to designer scope) for a specific device on the virtual backplane.
2

symbol data is available outside of ~|Argument Data Type |Description
name String OPC Server Device Name
gateway S,Cop,e' The CIP slot Integer Virtual Backplane Slot #
spemﬁcatlon includes many id Long OPC Server Device ID
operations that have no OPC port Integer Port #1 is the backplane. TCP/IP port
numbers are sequential starting with #2.

equivalents (at least, not yet in . — = =
Keyword-style invocation is allowed. If multiple criteria match, Name takes precedence over Slot,

Igmtlon). and Slot takes precedence over ID. ‘None’ is returned if no device matches. The returned object

. . has the following items:
This module includes Jython as fhe folowing ltems

. Propert Data Type Description
functions and data types to construct Property L rip .

. . maxMsg Integer Maximum bytes allowed in an encoded request.
virtually any desired CIP message Generally only meaningful on Class 3 buffered
request and parse the reply. Without | connections. , _ _

h . th info PortData |[Only present in client/designer port proxies,
the Scanner option, CS€ MeSSages contains information about the actual device
may be directed only at internal found.
tags, symbols, and CIP objects, msgprocessor.send(request, nesting=0)
including via the backplane. When |Argument Data Type Description
the scanrﬁn'optknjis present,user- request system.cip.Request|Or one qf its subclasses, with an
defined CIP b appropriate callback already added.

cenne messages may be sent hesting |Integer Number of target path segments to
through the scanner port to remote skip in the application path.

Generally omitted.

devices. Both Unconnected : : :
Callbacks on requests must be implementations of system.cip.ReplyConsumer.

messaging and CIP Class 3
messaging connections are supported.

Page 58 of 67

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/LinkedBlockingQueue.html

September 23, 2024 [UTORBGN
Ignition EtherNet/IP Module User Manual e
EtherNet/IP Communications Suite

All access to CIP Messaging operations starts with an Unconnected Messaging manager object in a

device’s port. For inward-facing
requests to the device itself, other
than to communication objects, it
doesn’t really matter which port is

Figure 37: system.cip.Request(target, serviceCode, payload=None)
Constructor for a generic CIP request object.

The returned request object has the following properties and methods:

Property Data Type Description
used’ an‘_l the default (baCkplane’ payload ByteBuffer Retrieve the current payload as a new
port #1) is reasonable. For ByteBuffer or replace the current
. payload with the bytes remaining in
outbound rquests with a SC?’nner the ByteBuffer assigned to it.
feature code, it is most efficient to [serviceCode |Integer Read-only after the constructor. 0-
use the same port # as in the first 127.

target system.cip.Path |Read-only after the constructor.

port segment of the route to the
target. For inward-facing requests

request.putPayload(buffer)

. .o . Argument Data Type Description
to a specific communication object, .
. : buffer ByteBuffer Retrieve the current payload and
the correct port number is required. write it to the given buffer.

In client/designer context, consider |request.addCallback(callback)
caching responses to getMsgPort() |request.addCallback(position, callback)

in a script module global to Argument Data Type Description

minimize round-trips to the gateway. position Integer Canacks are ordereq. Use 0 to place
. . . this callback first in the chain.

At its most basic, a request 18 callback ReplyConsumer The accept() method will receive the

composed of an application path, a Reply object.

service code, and an optional raw payload of bytes for the service to use. The corresponding reply
echoes the service code, has a status code and optional extra status words, and an optional raw payload
of bytes. Raw payloads are accepted and delivered as ByteBuffers.

Since it can be tedious and error-prone to construct raw request payloads and parse raw reply payloads, a
variety of CIP data types are provided with suitable ByteBuffer putPayload() and setPayload() methods.
These CIP data types can be wrapped in the same Jython-friendly wrappers used in the gateway-scoped
per-device code modules, via system.cip.toPy(). Also, some subclasses of system.cip.Request are
provided for request routing, request grouping, multiple attribute reads, and Class 3 connection
operations.

Before using a message processor’s send() method, attach one or more callbacks to your request. The
callback object must be a class that extends system.cip.ReplyConsumer and implements the accept()
method with one argument, the reply. The send() method does not return anything. Timing is
asynchronous, so it is possible for the reply to arrive in the callback (in another thread) before the send()
completes in the original thread.

See the JavaDoc for the underlying library for details of specific objects.

Page 59 of 67

https://www.automation-pros.com/enip1/javadoc/
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/nio/ByteBuffer.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/nio/ByteBuffer.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/nio/ByteBuffer.html

September 23, 2024 [UTORBGN
Ignition EtherNet/IP Module User Manual e
EtherNet/IP Communications Suite

11 Troubleshooting
11.1 OPC Tag Subscriptions

11.1.1 Stale Data from a Host or Target Driver

Any data in a virtual module that receives packets from a scheduled I/O connection, either as a passive
I/O output, an active I/O (scanner) input, or as a consumed tag, will be delivered to any OPC subscriber
when actual packets arrive. And only when packets arrive. If the connection is broken, the data will
become stale. This is the intended behavior. If the connection is delivering packets at a rate different
from the scan class, the data will be stale. If the RPI on the I/O connection is 100ms, the tags must be in
a scan class with a direct rate of 100ms. Consider using dedicated scan classes just for these I/0 tags.
Do NOT use leased scan classes with I/O data.

Tag event order and data delivery order within Ignition’s SQLTag system are not guaranteed. To
mitigate this, this module guarantees that all data from a newly-arrived I/O packet will be in place before
any affected OPC subscribers are updated, but the order the subscribers are updated is not under the
module’s control. Users who need to be sure a single packet’s data is processed together should use a
Data Event function within the virtual module’s script module. If that’s not practical, use a tag change
event on one single tag within the packet, and use system.opc.readAll() to obtain the rest of the data
within that event script. In a transaction group, use OPC Read mode and a single trigger.

11.1.2 Excessive Subscriptions

Each Host Device or Target Device uses a single Java thread to service all of its OPC subscriptions. The
OPC browse functions expose multiple ways to address much of the data, including string conversions
for various arrays, precision timestamp conversions, and individual bits of integral data types. Dragging
and dropping complex data types or arrays from the OPC browser to the SQLTags tree can create more
tags than expected or needed, and the high data rates common to Logix I/O will place a heavy load on
the OPC subscription thread. This will show up on the “Threads” section of the Gateway Console
webpage.

Users should prune the Gateway’s Tags tree of unneeded OPC items after every drag & drop action, and
be sure to update the scan class for any subscription items you keep. Generally, you would want to keep
any items that you want to use as tag event triggers, and any items you will be passing to client displays.
Items that would only be used within scripts using system.tag.read*() should not have OPC tags. Unlike
a conventional OPC driver, the Host and Target drivers produce no actual network traffic with
system.opc.read*().

11.2 Scanner Connection Errors

There are numerous possible reasons for a Scanner or Consumed tag connection failure. This module
provides status information on each connection under the Scanner Manager object for the virtual device.
Scanner Manager instances are numbered from 1-n for each I/O scanner connection, in the order defined
in the running XML configuration, and for consumed tags with the tag instance number plus 1,000,000.
The Tag Instances are visible by number under the Logix Symbol Manager object.

Entry Status is the primary indicator from the Scanner Manager for what its state machine is doing. This
is generally patterned after the corresponding Logix GSV instruction module data. Some hexadecimal
codes for aborted connections can occur blended together, shown below with ?” wildcards.

Page 60 of 67

September 23, 2024

Ignition EtherNet/IP Module User Manual
EtherNet/IP Communications Suite

ATOTION

PROFESSIONALS
uc

E::;xztatus ﬁ:;;ﬁg:g;;: Description, Possible Solutions
0 0x0000 Idle. Should be a transient status.
varies 0x1071 Connection aborted. Input Tag error. FaultCode and FaultInformation may
0x1471 have additional detail.
varies 8?%23% Connection aborted. Input Tag does not support Class 1 connections
varies 8?%2;3 Connection aborted. Input Tag inner element unsupported.
varies 0x1017 Connection aborted. Output Tag error. FaultCode and FaultInformation
0x1417? may have additional detail.
. 0x1027 Connection aborteq. Output Tag does not support‘CIass 1 connections.
varies 0x1425 Create an appropriate output tag — emulated Logix Tags support Class 1
) connections.
varies 0x1037? Connection aborted. Output Tag inner element unsupported. Direct access
0x1437 to tags must point at the first byte.
varies 0x147?7 Connection aborted. Neither Input Tag nor Output Tag configured.
5376 0x1500 Connection aborted. No route configured.
5889 0x1701 Explicit Connection Rejection. More information will be in the FaultCode
and FaultInformation properties.
5890 0x1762 Implicit Connection Failure. More information will be in the FaultCode
and FaultInformation properties.
5891 0x1763 Implicit Connection Input Destination Failure. More information will be
in the FaultCode and FaultInformation properties.
5892 0x1704 Implicit Connection Output Source Failure. More information will be in
the FaultCode and FaultInformation properties.
5893 0x1705 Implicit Connection State Failure.
8192 0x2000 Connecting, request preparation.
12288 0x3000 Connecting, request sent.
16384 0x4000 Connected. FaultCode and FaultInformation cleared to zero.
24576 0x6000 Connection Inhibited by attribute #1.
28672 0x7000 Connection Disabled by operating mode change or missing license option.

The FaultCode and FaultInformation attributes provide additional information about failures, following the
CIP standard for general status and extended status, respectively. Note that the free packet capture tool
Wireshark will annotate connection failure messages containing these message codes. Combinations
commonly encountered include the following, with solution possibilities to consider:

E:g}tﬁgge E:z}tﬁ:;ormatlon Description, Possible Solutions
1 256, 0x0100 Connection occupied or duplicate connection attempt. Possible driver
memory leak.
Unsupported Class and Trigger combination. Verify EDS file
! 259, O0x0103 | i formation/compatibility.
1 262 0x0106 Ownership conflict, usually another scanner is controlling outputs or
! has the primary connection to inputs.
Unsupported connection parameter, generic. Verify EDS file
! 264, 0x0108 information/compatibility.
Unsupported connection size, generic. Check input tag size, output
1 265, 0x0109 tag size, and size limit overrides to ensure they match the EDS
file's assembly sizes.
Missing required configuration data block. Either a static data
1 272, 0x0110 segment must be used in the application path, or a configuration tag
set up, or both.
Unsupported Requested Packet Interval, generic. Verify that RPIs are
1 273, 0x0111 entered in microseconds in the configuration and fit the EDS file
limits.
Out of connection resources. Can be any device along the route, not
1 275, 0x0113 just the target. Examine a packet trace to pinpoint the offending
device. Reduce network load at that point.
1 276, 0x0114 Unsupported Electronic Key, Vendor or Product Code.
1 277, 0x0115 Unsupported Electronic Key, Device Type.
1 278, 0x0116 Unsupported Electronic Key, Revision.
1 279 0x0117 Invalid input or output application path. Verify EDS file
! information. Possibly examine packet captures from working scanners.
1 280 0x0118 Invalid configuration application path. Verify EDS file information.
! Possibly examine packet captures from working scanners.

Page 61 of 67

https://www.wireshark.org/

September 23, 2024

Ignition EtherNet/IP Module User Manual
EtherNet/IP Communications Suite

UG Ara

PROFESSIONALS
uc,

FaultCode FaultInformation Areesl - -
Dec, Hex Dec, Hex Description, Possible Solutions
1 281. 0x0119 Listen-only connection not possible without other owner. Establish a
! primary connection before a listen-only connection.
Out of connection resources at the target application (not the
1 282, 0x011la connection manager). Examine device documentation for load reduction
possibilities.
1 293, 0x0125 Unsupported redundant owner request.
1 % = 294, Invalid configuration size. Upper half of FaultInformation indicates
0x?7770126 the largest configuration size allowed, in # of 16-bit words.
1 % = 295, Invalid output size. Upper half of FaultInformation indicates the
0x?77720127 largest output size allowed, in # of bytes.
1 % = 296, Invalid input size. Upper half of FaultInformation indicates the
0x?7770128 largest input size allowed, in # of bytes.
Invalid configuration application path. Verify EDS file information.
1 297, 0x0129 . -
Possibly examine packet captures from working scanners.
1 298 0x012a Invalid output application path. Verify EDS file information.
! Possibly examine packet captures from working scanners.
1 299, Ox012b Invalid input application path. Verify EDS file information.
! Possibly examine packet captures from working scanners.
Connection Timed Out. Verify UDP network packets can pass in both
! 515, 0x0203 directions.
Unconnected Message Timed Out. Verify TCP network packets can pass
! >16, 0x0204 in both directions.
1 769, 0x0301 EZC?iZ Device Out of Buffer Memory. Reduce the network load on the
1 785, 0x0311 Invalld/Ungvallable Port in Route. Verify the route path to the
target device.
Invalid/Unavailable Address in Route. Verify the route path to the
1 786, 0x0312 target device.
1 789, 0x0315 égz?l;d Segment in Route. Verify the route path to the target
1 796, Ox031c Mlscgllaneous Failure. Refer to target device documentation for
possible causes.
9 N Data Segment content error. Configuration rejected due to invalid
value in 16-bit word #N (zero-based) of the data segment.
12. Oxoc an Target application object state error. Refer to target device
! Y documentation for possible causes.
16, 0x10 any Targgt device state error. Refer to target device documentation for
possible causes.
255, Oxff any General failure. Refer to target device documentation for possible

causes.

Page 62 of 67

September 23, 2024 [UTORBGN
Ignition EtherNet/IP Module User Manual e
EtherNet/IP Communications Suite

12 Allen-Bradley Logix Firmware Variations

Rockwell Automation’s Logix™ family of processors have changed greatly over the years since they
were first introduced. Those changes are particularly important when emulating the tags/types of any
Logix processor, as this driver’s Host Device does. Exhaustive probing of various models with all
available firmware versions has yielded a comprehensive index of those versions.

12.1 Elementary Data Types

Elementary data types, also called “primitive” data types in programming languages, are the
fundamental units of data in these PLCs. Arrays and structures are composed of these types. All of
these types are described in the CIP Specification, Volume 1, § C-2.1.1, though Rockwell Automation
chose to use different names for some of them.

All Logix processors have the following elementary types: BOOL, SINT, INT, DINT, and REAL.
All Logix processors since firmware version 16 have the elementary type LINT.

Logix processors in the 5380, 5480, and 5580 families (like the 1756-L.81) have the following
elementary types, starting with firmware version 32: USINT, UINT, UDINT, ULINT, and LREAL.

Logix processors in the 5380, 5480, and 5580 families have the following CIP elementary types, starting
with firmware version 34 (Logix names in parentheses): UTIME (DT), STIME (LDT), NTIME
(LTIME), LTIME (TIME), and FTIME (TIME32).

Note that “LTIME” has a conflicting meaning between the two conventions. “DT” is also defined
differently by the CIP specification, and is supported by this driver in the Client device type to handle
CIP standard messaging. This driver accepts the Rockwell names when importing an L5X file. At all
other points, the driver requires the CIP names.

12.2 Predefined Structured Types

The Logix Data Access manual prescribes how an external system should browse the tags and structured
data types used in a Rockwell PLC. In L55, L6x, L7x, and corresponding CompactLogix models, many
predefined structured data types show up in the browse protocol with different names from what a
programmer sees within RSLogix 5000 or Studio 5000, and different from what shows up in an L5X
project export. (In some cases, this appears to be as simple as spelling errors in the firmware.) This
driver’s Host Device type must do the same when emulating these processors. In current hardware, L8x
and corresponding CompactLogix models, the browse protocol shows the same names as the
programming tools and their project exports.

In the table below, “Usable” indicates that the structure can be used as the datatype for a simple
controller tag. Some datatypes have further restrictions with arrays, program tags, and/or nested
structure member usage. Certain datatypes, that show only as “present” in all models and versions, can
appear is data types supplied by I/O modules.

L55 controllers support firmware versions 10 through 16. L6x controllers support firmware versions 12
through 20. L7x controllers support firmware versions 19° and higher. L8x controllers support
firmware versions 29 and higher.

L55, L6x, L7x Families L8x Family
Type Name ID Browse Protocol Name Present | Usable |Present| Usable
ALARM 0x0f8b All All
ALARM_ ANALOG Ox0ffa v16-v35 All
ALARM CONDITION Ox0f53 v31-v35

3 Only in L72 processors. Others start at v20.
Page 63 of 67

September 23, 2024

Ignition EtherNet/IP Module User Manual
EtherNet/IP Communications Suite

ATOTION

PROFESSIONALS
uc

L55, L6x, L7x Families L8x Family

Type Name ID Browse Protocol Name Present | Usable | Present| Usable
ALARM DIGITAL Ox0ffb v16-v35 All
ALARM SET Ox0faf v31-v35
ALARM SET CONTROL 0x0f46 v32-v35 v32-v35
AUX VALVE CONTROL 0x0f68 |AVC STRUCT v17-v35 All
AXIS CIP DRIVE 0x0Ff9 |AXIS CIP v18-v35 ALl
AXIS CONSUMED Ox0fcb All All
AXIS FEEDBACK Ox0fcc v10-v29 v29
AXIS GENERIC 0x0fc9 v10-v11l|v12-v35|v29-v35
AXIS GENERIC DRIVE Ox0fcd v15-v35|v29-v30|v31-v35
AXIS SERVO Ox0fc8 All v29-v30|v31-v35
AXIS SERVO DRIVE 0x0fc7 |[AXIS SERVODRIVE All v29-v30|v31-v35
AXIS VIRTUAL Ox0fca All All
BRKPT Ox0fcf v10-v29 v29
BUS 0BJ 0x0f35 v33-v35
CAMSHAFT MONITOR Ox0f5f [CSM_STRUCT v17-v35 All
CAM Ox0f88 |PCAM All All
CAM_EXTENDED 0x0f19 v34-v35
CAM PROFILE Ox0f89 All All
CAM _PROFILE EXTENDED Ox0f18 v34-v35
CB_CONTINUOUS MODE 0x0f71 |[CBCM STRUCT v17-v35 All
CB_CRANKSHAFT P0OS MONITOR 0x0f74 [CPM_STRUCT v17-v35 All
CB_INCH MODE 0x0f73 |[CBIM STRUCT v17-v35 All
CB_SINGLE STROKE MODE 0x0f72 |CBSSM STRUCT v17-v35 All
CC 0x0fd2 [COORDINATED CONTROL v17-v35 All
CONFIGURABLE ROUT 0x0f66 [ROUT2 STRUCT v17-v35 All
CONNECTION STATUS 0x0f76 [CONNECTION STATUS STRUCT v15-v16 | v17-v35 All
CONTROL 0x0f81 All All
COORDINATE SYSTEM 0x0ffc [MOTION COORDINATE SYSTEM v12-v35 All
COUNTER Ox0f82 All All
DATALOG INSTRUCTION Ox0f5a |DATALOG v21-v35 All
DCAF_INPUT 0x0f5b |DCAF_STRUCT v20-v35 All
DCA INPUT 0x0f70 |DCA STRUCT v20-v35 All
DCI MONITOR 0x0f60 [DCM_STRUCT v17-v35 All
DCI START 0x0f61 [DCSRT STRUCT v17-v35 All
DCI STOP 0x0f65 [DCS STRUCT v17-v35 All
DCI_STOP TEST 0x0764 |DCST_STRUCT v17-v35 ALl
DCI STOP TEST LOCK 0x0f63 |DCSTL STRUCT v17-v35 All
DCI STOP TEST MUTE 0x0f62 |[DCSTM STRUCT v17-v35 All
DEADTIME Ox0f90 All All
DERIVATIVE Ox0fb3 All All
DISCRETE 2STATE 0x0f98 All All
DISCRETE 3STATE 0x0f99 All All
DIVERSE INPUT 0x0f7c [DIN STRUCT v15-v35 All
DOMINANT RESET Ox0faa All All
DOMINANT SET Ox0fa9 All All
DYNAMICS DATA Ox0f50 v30-v35 v30-v35
EIGHT POS MODE SELECTOR 0x0f6d |[EPMS STRUCT v17-v35 All
EMERGENCY_ STOP 0x0f7e |[ESTOP_STRUCT v15-v35 All
ENABLE_PENDANT 0x0f78 |[ENPEN STRUCT v15-v35 All
ENERGY BASE Ox0fed v31l-v35
ENERGY ELECTRICAL Ox0fel v31-v35
EXT ROUTINE CONTROL 0x0fdl v12-v35 All
EXT ROUTINE PARAMETERS Ox0fdo v12-v35 All
FBD BIT FIELD DISTRIBUTE Ox0fcO |[FBD BIT FILED DISTRIBUTE All All
FBD BOOLEAN AND 0x0f9a All All
FBD BOOLEAN NOT 0x0fod All All
FBD BOOLEAN OR Ox0f9b All All
FBD BOOLEAN XOR Ox0f9c All All

Page 64 of 67

September 23, 2024

Ignition EtherNet/IP Module User Manual
EtherNet/IP Communications Suite

UG Ara

PROFESSIONALS
uc

L55, L6x, L7x Families L8x Family
Type Name ID Browse Protocol Name Present | Usable | Present| Usable
FBD COMPARE Ox0fbc All All
FBD CONVERT Ox0fbe All All
FBD COUNTER Ox0fb8 All All
FBD LIMIT Ox0fc2 All All
FBD LOGICAL Ox0fbd All All
FBD MASKED MOVE Ox0fcl All All
FBD MASK EQUAL Ox0fc3 All All
FBD MATH Ox0fba All All
FBD MATH ADVANCED Ox0fbb All All
FBD ONESHOT Ox0fb9 All All
FBD TIMER Ox0fb7 All All
FBD TRUNCATE Ox0fbf All All
FILTER HIGH PASS 0x0f9e All All
FILTER LOW_PASS Ox0fof All All
FILTER NOTCH Ox0fabd All All
FIVE_POS MODE_SELECTOR 0x0f7f |FPMS_STRUCT v15-v35 ALl
FLIP FLOP D Ox0fa5 All All
FLIP FLOP JK Ox0fab All All
FUNCTION GENERATOR Ox0f91 All All
HL LIMIT 0x0f92 All All
HMIBC Ox0ff8|J0G v21-v35 All
IMC 0x0fd3 |[INTERNAL MODE CONTROL v17-v35 All
INTEGRATOR Ox0fa3 All All
LEAD LAG Ox0f8f All All
LEAD_LAG_SEC_ORDER 0x0fal ALl ALl
LIGHT CURTAIN 0x0f7a |[LCUR STRUCT v15-v35 All
MAIN VALVE CONTROL 0x0f69 |MVC STRUCT v17-v35 All
MANUAL VALVE CONTROL 0x0f67 |MMVC STRUCT v17-v35 All
MAXIMUM CAPTURE Ox0fb5 All All
MESSAGE OxOfff All All
MINIMUM CAPTURE 0x0fb4 All All
MMC 0x0fd4 |MODULAR MULTIVARIABLE CONTROL v17-v35 All
MOTION GROUP Ox0ffd |GROUP All All
MOTION INSTRUCTION Ox0f87 |MOTION All All
MOVING AVERAGE Ox0f93 All All
MOVING STD DEV 0x0fb0 ALl ALl
MULTIPLEXOR Ox0fa8 [MULTIPLEXER All All
MUTING FOUR SENSOR BIDIR 0x0f6a |FSBM STRUCT v17-v35 All
MUTING TWO SENSOR ASYM 0x0f6C |[TSAM STRUCT v17-v35 AL
MUTING_TWO SENSOR_SYM 0x0f6b |TSSM_STRUCT v17-v35 ALl
ODOMETER Ox0fe2 v31-v35 v31-v35
OSCILLATOR Ox0fad v10-v29 v29
OUTPUT CAM Ox0fch All All
OUTPUT COMPENSATION Ox0fcb All All
PATH DATA 0x0f51 v30-v35 v30-v35
PHASE Ox0f77 v15-v35(|v29-v31|v32-v35
PHASE INSTRUCTION 0x0f75 v15-v35 All
PIDE AUTOTUNE 0x0fb6 [AUTOTUNE PIDE All All
PID 0x0f84 All All
PID ENHANCED 0x0f94 All All
POSITION DATA 0x0f52 v30-v35 v30-v35
POSITION PROP 0x0f95 All All
PROP_INT Ox0fa2 All All
PULSE MULTIPLIER Ox0fac All All
P_ANALOG_FANOUT 0Ox0f3c v33-v35
P_ANALOG HART 0x0flb v33-v35
P _ANALOG INPUT Ox0f42 v33-v35
P_ANALOG INPUT DUAL Ox0f31 v33-v35

Page 65 of 67

September 23, 2024 [UTORBGN
Ignition EtherNet/IP Module User Manual e
EtherNet/IP Communications Suite

L55, L6x, L7x Families L8x Family
Type Name ID Browse Protocol Name Present | Usable | Present| Usable
P_ANALOG_INPUT MULTI 0x0734 v33-v35
P_ANALOG_OUTPUT 0x0f41 v33-v35
P _BOOLEAN LOGIC 0x0f38 v33-v35
P_COMMAND_ SOURCE 0x0f43 v33-v35
P_DEADBAND Ox0f36 v33-v35
P DISCRETE 4STATE Ox0f17 v35
P DISCRETE INPUT 0x0f45 v33-v35
P DISCRETE MIX PROOF 0x0f15 v35
P DISCRETE N POSITION Ox0f16 v35
P DISCRETE OUTPUT 0Ox0f44 v33-v35
P _DOSING 0x0f30 v33-v35
P_HART CODE_DESC_STATUS 0x0fla v33-v35
P HIGH LOW SELECT 0x0f37 v33-v35
P_INTERLOCK 0x0f33 v33-v35
P_INTERLOCK BANK_STATUS 0x0f32 v33-v35
P_LEAD LAG_STANDBY 0x0f23 v33-v35
P LEAD LAG STANDBY MOTOR 0x0f22 v33-v35
P _MOTOR DISCRETE 0x0f2e v33-v35
P PERMISSIVE Ox0f3b v33-v35
P PID 0Ox0f24 v33-v35
P PRESS TEMP COMPENSATED 0x073d v33-v35
P RESTART INHIBIT Ox0f3e v33-v35
P _RUN TIME 0x0f40 v33-v35
P _STRAPPING TABLE ROW 0x0f39 v33-v35
P_TANK_STRAPPING TABLE 0x0f3a v33-v35
P_VALVE DISCRETE 0x0f2f v33-v35
P VALVE STATISTICS Ox0f3f v33-v35
P VARIABLE SPEED DRIVE 0x0f28 v33-v35
RAC_CODE_DESCRIPTION 0x0f2d v33-v35
RAC EVENT Ox0f2c v33-v35
RAC ITF DVC PWRDISCRETE CMD | Ox0f2b v33-v35
RAC ITF DVC PWRDISCRETE SET | Ox0f2a v33-v35
RAC ITF DVC PWRDISCRETE STS | Ox0f29 v33-v35
RAC_ITF DVC PWRMOTION CMD | 0x0f21 v33-v35
RAC_ITF DVC PWRMOTION INF | 0x0f20 v33-v35
RAC_ITF DVC PWRMOTION SET | OxOfLf v33-v35
RAC ITF DVC PWRMOTION STS 0x0fle v33-v35
RAC ITF DVC PWRVELOCITY CMD | Ox0f27 v33-v35
RAC_ITF DVC PWRVELOCITY SET | 0x0f26 v33-v35
RAC_ITF DVC PWRVELOCITY STS | 0x0f25 v33-v35
RAMP_SOAK 0x0f97 All All
RATE LIMITER Ox0fb2 All All
REDUNDANT INPUT 0x0f7b [RIN STRUCT v15-v35 All
REDUNDANT OUTPUT 0x0f7d |[ROUT STRUCT v15-v35 All
SAFELY LIMITED POSITION Ox0f4da v31-v32|v33-v35
SAFELY LIMITED SPEED Ox0fdc v31-v32|v33-v35
SAFETY FEEDBACK INTERFACE 0x0fde v31-v32|v33-v35
SAFETY MAT 0x0f6f |[SMAT STRUCT v17-v35 All
SAFE_BRAKE CONTROL 0Ox0f47 v31-v32|v33-v35
SAFE DIRECTION Ox0f4b v31-v32|v33-v35
SAFE_OPERATING STOP 0x0f49 v31-v32|v33-v35
SAFE STOP 1 0x0f4d v31-v32|v33-v35
SAFE_STOP_2 0x0f48 v31-v32|v33-v35
SAWTOOTH Ox0fae v10-29 v29
SCALE 0x0f8a All All
SEC_ORDER CONTROLLER 0x0fad All All
SELECTABLE NEGATE Ox0fbl All All
SELECTED SUMMER Ox0fa7 All All

Page 66 of 67

September 23, 2024 [UTORBGN
Ignition EtherNet/IP Module User Manual e
EtherNet/IP Communications Suite

L55, L6x, L7x Families L8x Family
Type Name ID Browse Protocol Name Present | Usable | Present| Usable
SELECT Ox0f8c All All
SELECT ENHANCED Ox0f8d All All
SEQUENCE Ox0f5d v28-v35|v30-v35
SEQ BOOL 0x0f54 |SEQUENCE BOOL v28-v35|v30-v35
SEQ DINT 0x0f57 |SEQUENCE DINT v28-v35|v30-v35
SEQ INT 0x0F56 |SEQUENCE INT v28-v35| v30-v35
SEQ REAL 0x0f58 |SEQUENCE REAL v28-v35|v30-v35
SEQ SINT 0x0f55 |SEQUENCE SINT v28-v35|v30-v35
SEQ STEP 0x0f5c |[SEQUENCE STEP v28-v35|v30-v35
SEQ STRING 0x0f59 [SEQUENCE STRING v28-v35|v30-v35
SEQ TRANSITION 0x0f6e |SEQUENCE TRANSITION v28-v35|v30-v35
SERIAL PORT CONTROL Ox0fc4 |ASCIICONTROL All All
SFC_ACTION Ox0fde v11l-v35 All
SFC_STEP Ox0fdf v11l-v35 All
SFC_STOP 0x0fdd v1l-v35 All
SIGNED ODOMETER 0x0fe3 v31-v35 v31-v35
SPLIT RANGE 0x0f96 All All
STRING Ox0fce |[ASCIISTRING82 All All
STRING 16 Ox0f1ld v33-v35 v33-v35
STRING 32 Ox0flc v33-v35 v33-v35
S CURVE 0x0fab ALl AL
THRS ENHANCED Ox0f5e v17-v35 All
TIMER 0x0f83 All All
TOTALIZER 0x0f8e All All
TWO HAND RUN STATION 0x0f79 |THRS STRUCT v15-v35 All
UP DOWN_ACCUM 0x0faf |UP_DOWNN ACCUM ALl ALl

Notice that L8x family hardware, while introducing a large number of new datatypes for new features,
does lack functionality available in the L7x family at matching firmware levels. The last being the
sequence data types—still not supported in L8x at this time.

Page 67 of 67

