
Spreadsheet Import Tool

Automation Professionals' Exchange Resource

Version 1.1

July 16, 2024 15:17z

The Spreadsheet Import Tool allows a complex structure of Ignition OPC
Server Device instances, OPC UA Server Connections, UDT instances,
and arbitrary tag instances to be defined and maintained in an Excel (or

LibreOffice) spread sheet format.

July 16, 2024 15:17z

Spreadsheet Import Tool
Automation Professionals' Exchange Resource

Table of Contents
Overview..3

Prerequisites...4

Installation..4

Usage..4

Spreadsheet Architecture...5
Header Keywords...5
Row Blocks...6
Local Variables...6
Column Blocks...7
Iterators...7
Actions..7

Support...8

July 16, 2024 15:17z

Spreadsheet Import Tool
Automation Professionals' Exchange Resource

Overview
When an Ignition gateway needs to be deployed to multiple sites, or to multiple independent systems
within a site, but with a varying numbers and names of devices, with a corresponding varying tag
architecture, scripting is the native solution. Ignition offers system.device.addDevice(),
system.tag.configure(), and system.tag.writeBlocking() to allow automation of such tasks.

However, this can be non-trivial, and there is no common data format defined for these tasks.
Everything depends on in-house programming talent. This Exchange resource aims to consolidate all
such tasks into a familiar format, with a single definitive script.

This common script can perform the following tasks:

• Create arbitrary devices in Ignition's built-in OPC UA server, using any properties supported by
Ignition's system.device.addDevice() API. Existing devices are skipped by default, but
deletion before recreation may be selected.

• Create OPC UA server connections with Ignition's built-in OPC UA client, using any properties
supported by Ignition's system.opcua.addConnection() API. Existing server connections are
skipped by default, but deletion before recreation may be selected.

• Create UDT instances at arbitrary tag paths using any UDT definition present in a selected tag
provider. Setting parameters, properties (including custom properties), and member tag values is
fully supported. Parameter and member tag value operations include data type coercion based on
the UDT definition. Properties are delivered with the system.tag.configure() call, while
parameter overrides and member assignments use system.tag.writeBlocking() (in order to
avoid data type munging bugs that plague the .configure() operation).

• Create arbitrary tags (typically atomic tags) with desired properties' assignments.

• UDT instances and arbitrary tags use "merge" mode by default, but "overwrite" mode may be
selected.

• There is also a mode for deleting Devices, OPC Connections, UDT instances, and arbitrary tags
created by this script (feeding the original spreadsheet back through). For developer
convenience when static tags exist that should not be destroyed when recovering from an import
operation that goes awry.

All of the above may leverage common features of the spreadsheet traversal algorithm:

• Numeric iteration is available, for repeating any of the above operations for many devices, UDT
instances, and tags. Iteration over arbitrary strings is possible using a dummy numeric iterator
and adjacent value columns. Iteration can also be nested within a group of related operations, for
multiple UDT instance per device, and similar complex hierarchies.

• Most values in the spreadsheet may use printf-style string substitution to inject numbers and
strings from prior columns in the spreadsheet, within a block of related rows. This is the key to
including iterator integers and associated string lists in properties, parameters, and value
overrides.

• Python's eval() function is supported in a special column type for operations that cannot be
performed purely by printf-style substitution.

• Device properties, UDT parameters, properties, and member value overrides, and arbitrary tag
properties are all specified in a compact two-column key/value format. The value column in
each pair supports printf-style string substitution, too.

July 16, 2024 15:17z

Spreadsheet Import Tool
Automation Professionals' Exchange Resource

• Device, OPC UA Connection, UDT instance, and arbitrary tag properties are delivered to the
Ignition API without any particular data type coercion. Ensure your spreadsheet values are in a
form that naturally converts.

• UDT parameter values, UDT member values, and arbitrary tags' assignment to a value property
will all be coerced to the defined data types. Document tag types should use JSON encoding.

Prerequisites
This module requires the installation of Automation Professionals' Integration Toolkit third party add-on
module for Ignition, version 2.0.17 or later. Install this module in your gateway before importing the
project file.

The project is tested on Ignition version 8.1.42, but may run on earlier versions.

Installation
These tasks are required:

• Install Automation Professionals' Integration Toolkit third party add-on module first.

• Import the supplied project file to a project name of your choice. The Automation Professionals'
test and development environment uses "spreadsheet-import-tool". This project deliberately does
not have a default tag provider, nor a default database.

• Update gateway and/or project security settings so that the user intended for this project has the
"Administrator" role (case sensistive). The project uses the "default" IdP unless updated.

This task is optional, but recommended for running the example spreadsheet:

• Import the UDT definitions supplied in ExampleUdts.json, perhaps into a new Realtime Tag
Provider.

Usage
• Create any new Realtime Tag provider needed, and import any UDT definitions you will need for

the spreadsheet(s) you intend to use.

• Launch a session of this project. You should see this:

• Click the "Authenticate" button. The sad face will change when you have the "Administrator"
role.

• Follow the remaining, numbered, steps. Use the provider list refresh button if a new realtime tag
provider was added after gateway startup.

https://forum.inductiveautomation.com/t/automation-professionals-integration-toolkit-module/74934
https://forum.inductiveautomation.com/t/automation-professionals-integration-toolkit-module/74934

July 16, 2024 15:17z

Spreadsheet Import Tool
Automation Professionals' Exchange Resource

• The file upload component won't appear until a tag provider is selected.

• Set the "Verbose Progress" checkbox to get considerable extra detail in the progress log. Helpful
when troubleshooting a workbook that doesn't yield the expected results.

• The import operation occurs immediately upon upload—there is no confirmation.

• While the import runs, the UI components are disabled, and the progress area updates every ¼
second. At the end, the UI is re-enabled, and the progress log is available for download (in
markdown format).

Spreadsheet Architecture
The import algorithm expects the supplied workbook to have one or more worksheets that follow a
specific, hierarchical layout, with a row of keyword headers, and one or more blocks of rows with values
that drive the import actions. Worksheets within the workbook that do not have the expected structure
are simply skipped, allowing them to be used for documentation, or as lookup sources for spreadsheet-
side automation.

Spreadsheet formulas and styles are entirely ignored. Only the values in the spreadsheet matter for the
import, as they were captured when the workbook was saved. Even hidden content will be processed
upon import.

Header Keywords
Column headers are taken from the first row that has any content in column A, there is at least one
column that contains an "Action Trigger" keyword, and other columns contain the required keywords
that correspond to that action (if any). Other columns in the header row may be empty, causing that
entire column to be ignored by the import algorithm. Which allows such columns to contain
documentation, or function as lookup sources for spreadsheet-side automation. (Make sure headers for
lookup operations do not fall on the same row as the algorithm's headers.)

Keyword
Action
Trigger

Required
For Action

Operation

DeviceType A string for the deviceType argument to system.device.addDevice().

July 16, 2024 15:17z

Spreadsheet Import Tool
Automation Professionals' Exchange Resource

Keyword
Action
Trigger

Required
For Action

Operation

Device DeviceType A string for the deviceName argument to system.device.addDevice().

DevPropKey
DevpropValue

DeviceType

Must be adjacent columns. Supplies key/value pairs needed in the deviceProps
argument to system.device.addDevice(), as documented for the specific device
type. If a description key is supplied, it will be popped from the settings and
delivered as a keyword argument to system.device.addDevice().

OpcCx A string for the name argument to system.opcua.addConnection().

OpcPropKey
OpcPropValue

OpcCx

Must be adjacent columns. Supplies key/value pairs needed in the settings
argument to system.opcua.addConnection(). If any of the following keys are
supplied, they will be popped from the settings dictionary and delivered directly as
keyword arguments to system.opcua.addConnection():

• description
• discoveryUrl
• endpointUrl
• securityPolicy
• securityMode

UdtTypePath
Must be the path of a UDT definition within the provider. Excluding the provider
and the “_types_” folder names.

UdtInstancePath UdtTypePath
Instance name, with folder path, to create. Exclude the provider name. Also treated
as a variable name.

UdtParamKey
UdtParamValue

Optional for UDT creation. Supplies parameter overrides. Keys that do not match
parameter names in the UDT may produce errors.

UdtPropKey
UdtPropValue

Optional for UDT creation. Supplies property overrides and/or new property
values. Keys that are not associated with common properties will be assigned to
new custom properties.

UdtMemberKey
UdtMemberValue

Optional for UDT creation. Supplies value overrides and/or property overrides for
member tags within the UDT. Member names that do not exist in the UDT will
produce errors. Property names appended to member names can yield custom
properties.

TagInstancePath Instance name, with folder path, to create. Exclude the provider name.

TagPropKey
TagPropValue

Optional for Tag creation. Supplies property overrides and/or new property values.
Keys that are not associated with common properties will be assigned to new
custom properties.

prefixIterator
Any header that ends with "Iterator" supplies one or more integers or integer ranges
to repeat executions of following columns, via "prefix" as a variable name.

prefixEval
Any header that ends with "Eval" causes the value(s) in the column to be treated as
python expressions. Result is placed in the "prefix" variable name.

prefixKey
prefixValue

Must be adjacent columns. Supplies key/value pairs to the local variable table as a
convenience. The prefix is discarded.

All column headers not ending in "Key", "Value", "Iterator", or "Eval", including any user-supplied
headers, are treated as variable names. All column header keywords are case-sensitive.

Row Blocks
Starting immediately below the row of header keywords, the import algorithm uses the content of
column A to segregate the rows of the worksheet into blocks of related rows. The first row under the
headers with any content in column A starts the first block. The first block's rows continue until an
empty cell in column A is followed by an occupied cell in column A.

The second block, and all following blocks, start at the transition from an empty cell in column A to an
occupied cell in column A. The import operation handles one block at a time. While only the cell in
column A above a new row block needs to be empty, a completely empty row is recommended.

Local Variables
Every cell from which a string is read, except for columns whose keywords end in "Key" or "Eval", is
run through python's dictionary-based, printf-style "%" string formatting operation before any further
computation. The result is placed into the local variable dictionary for use in cells below it and/or to its

July 16, 2024 15:17z

Spreadsheet Import Tool
Automation Professionals' Exchange Resource

right. When the cell is in the "Value" column of a key/value column pair, and is one of the special
columns used by an action, the result value is also placed in that action's special dictionary(ies). When
the cell is in a column under an "Eval" keyword, python's eval() function is used instead of python's
string formatting operator.

Column Blocks
Within a related block of rows, the import operation evaluates column-wise from left to right,
accumulating all of the information that will apply to any triggered actions. Columns that are paired
keys & values are (always) evaluated row-wise. Columns that have no header are skipped. Other
columns that are not to the right of an iterator take their value from the first row of the block, ignoring
any others. Other columns that are to the right of an iterator take their value from the same row as the
iterator, unless it is an empty cell, and then the first row of the block is used.

A column block ends at an iterator column, or the right edge of the spreadsheet. At the end of a column
block, all actions that have been triggered since the start of the column block are executed. (Only one
action of each type may be present in a column block. Extras won't generate an error, but only the latter
action will be executed.)

Iterators
Columns whose keyword ends in "Iterator" cause any column block to their left to execute (clearing any
queued actions), then capture the state of the local variable dictionary, and begin a new column block.
The iterator column evaluates row-wise, and must contain plain integers, a hyphen-delimited integer
range, or comma-delimited collections of plain integers and/or ranges. Whitespace is ignored. Empty
cells are skipped. The entire column block to the right is repeatedly evaluated for every integer given.
For every repeat, the local variable dictionary is reset to the captured state, and queued actions executed.

Note that integer values and ranges can appear multiple times, and will then execute with that value
multiple times. This would typically be paired with a companion general-purpose column that supplies
unique values for each multiple.

Multiple iterator columns can be used, and will execute as nested loops. That is, when a first iterator has
ten integer values, and the second iterator has five values, the column block starting with the second
iterator column will execute fifty times.

Actions
The whole point of this import tool is to execute one or more actions. The information needed by an
action, as described in the table of keywords, is assembled as a column block is evaluated, and executed
at the end of that column block. The "action trigger" columns are what place that action in the queue of
things to do at the end of the column block. The special key/value dictionaries associated with an action
are attached to the queue, and are discarded after execution. This allows later column blocks to use the
same actions (same column headers) for a nested purpose, using only the newly-specified settings. (The
prior values remain in the local variable table if not overwritten, but do not affect later actions.)

Each action has an overall import mode, independent for each action, set by the user in the Perspective
User Interface. The possible modes can be summarized as:

• Conditional create (either skip existing or merge to existing),

• Unconditional create (either delete before creating, or overwrite while creating),

• Delete (reversing the effect of a prior run of the workbook), and

• Skip (ignoring all actions of that type).

July 16, 2024 15:17z

Spreadsheet Import Tool
Automation Professionals' Exchange Resource

Available Actions:

• Device create or delete. Calls Ignition's system.device.addDevice() and/or
system.device.removeDevice() with the arguments and additional properties computed for
import. No "merge" is possible with Ignition's current API.

• OPC UA Connection creation. Calls Ignition's system.opcua.addConnection() and/or
system.opcua.removeConnection() with the arguments and additional properties computed
for import. No "merge" is possible with Ignition's current API.

• UDT Instance create/merge/delete. Calls Ignition's system.tag.configure() or
system.tag.deleteTags() with the arguments and properties computed for import. When not
deleting, also calls system.tag.writeBlocking() for all parameter and value assignments.

• Arbitrary Tag Instance create/merge/delete. Calls Ignition's system.tag.configure() or
system.tag.deleteTags() with the arguments and properties computed for import. When not
deleting, and the tag's value property was supplied, also calls system.tag.writeBlocking()
for that value assignment. When the dataType property is omitted, this action creates a
Document tag, not an Integer tag. Can be used with proper properties to automate creation of
non-atomic tags outside UDTs, including tag folders with custom properties.

Special handling is provided when UDT or tag instance creation involves setting values on Document
tags or UDT members of Document type: the string provided for that value in the spreadsheet is
expected to be dictionary in JSON-encoded format. The import operation will then perform the
necessary call to system.util.jsonDecode() before the call to system.tag.writeBlocking().

When using the "Delete" mode with UDT instances and arbitrary tags, only the leaf name specified in
the spreadsheet will be provided to the system.tag.deleteTags() API call. Be aware that
system.tag.configure() will implicitly create any folders needed when creating/merging any instance
path it is given. The delete operation will not touch those.

Support
Contact Automation Professionals via our Support Email address. But note that exchange support is low
priority.

mailto:support@automation-pros.com?subject=Exchange%20Resource

